

## ULTRA TwIN

Instruction Manual

## Ultra Twin (Fourth Edition Rev 3)

February 2020
Part Number M-192-0-004-3P

## COPYRIGHT

© Pulsar Process Measurement Limited, 2005-20. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language in any form without the written permission of Pulsar Process Measurement Limited.

## WARRANTY AND LIABILITY

Pulsar Process Measurement Limited guarantee for a period of 2 years from the date of delivery that it will either exchange or repair any part of this product returned to Pulsar Process Measurement Limited if it is found to be defective in material or workmanship, subject to the defect not being due to unfair wear and tear, misuse, modification or alteration, accident, misapplication or negligence.

## DISCLAIMER

Pulsar Process Measurement Limited neither gives nor implies any process guarantee for this product and shall have no liability in respect of any loss, injury or damage whatsoever arising out of the application or use of any product or circuit described herein.
Every effort has been made to ensure accuracy of this documentation, but Pulsar Process Measurement Limited cannot be held liable for any errors. Pulsar Process Measurement Limited operates a policy of constant development and improvement and reserves the right to amend technical details as necessary.
The Ultra Twin shown on the cover of this manual is used for illustrative purposes only and may not be representative of the actual Ultra Twin supplied.

## Comments, Suggestions and Technical Enquiries

Please contact Pulsar Measurement if you have any comments, suggestions or if you require technical support using the information below:

## UK Office

Pulsar Process Measurement Ltd.
Cardinal Building
Enigma Business Centre
Sandy's Road
Malvern
Worcestershire
WR14 1JJ
United Kingdom
Tel: +44 (0) 1684891371
Fax: +44 (0) 1684575985

## Website:

www.pulsar-pm.com
General Information email: info@pulsar-pm.com
Technical Support email: support@pulsar-pm.com

## Canada Office

Greyline Instruments Inc.
16456 Sixsmith Drive
Long Sault
ON
K0C 1P0
Canada

| Tel: | $613-938-8956$ | Tel: | $315-788-9500$ |
| :--- | :--- | :--- | :--- |
| Toll Free: | $855-300-9151$ | Tax Free: | $888-473-9546$ |
| Fax: | $613-938-4857$ | Fax: | $315-764-0419$ |

## Website:

www.greyline.com
General Information email:
info@greyline.com
Technical Support email:
service@greyline.com

## USA Office

Greyline Instruments Inc. 11451 Belcher Road South
Largo
FL 33773
USA

Website:
www.greyline.com
General Information email:
info@greyline.com
Technical Support email:
service@greyline.com
Chapter 1 Start Here ..... 1
About this Manual ..... 1
About the Ultra Twin ..... 2
Functional Description ..... 2
Product Specification. ..... 4
EU Declaration of Conformity ..... 6
Chapter 2 Installation ..... 7
Unpacking ..... 7
Power Supply Requirements. ..... 7
Location ..... 7
Dimensions ..... 9
Wall mount ..... 9
Fascia Mount ..... 11
Terminal Connection Details ..... 13
Wall Mount ..... 13
Fascia Mount ..... 13
Voltage Selector and Fuse Location ..... 17
Wall mount ..... 17
Fascia mount ..... 17
Preparation for Operation. ..... 19
Maintenance. ..... 19
Chapter 3 How To Use Your Ultra Twin ..... 21
Operating the Controls ..... 21
Display ..... 21
Run Mode ..... 23
Program Mode ..... 23
How to Access Program Mode ..... 24
Test Mode ..... 29
Using the RS232 Serial Interface. ..... 30
Parameter Defaults ..... 32
Factory Defaults ..... 32
Chapter 4 Quick Setup Guide ..... 33
Level or Volume ..... 34
Example 1 Level Monitoring with Alarms ..... 40
Example 2 Level Monitoring and Control (up or down) ..... 42
Example 3 Volume Application ..... 44
Example 4: Differential Control. ..... 46
Pump ..... 50
Example 1 Sump Control (pump down) ..... 55
Example 2 Reservoir Control (pump up) ..... 57
Flow ..... 59
Exponential Devices. ..... 66
Point of Measurement ..... 67
Calculations ..... 69
Example 1 ' $V$ ' Notch Weir. ..... 71
BS3680 Flumes ..... 73
Point of Measurement ..... 73
Calculations ..... 74
Example 2 BS3680 U-Throated Flume ..... 76
BS3680 Thin Plate Weirs. ..... 78
Point of Measurement ..... 78
Calculations ..... 78
Example 3 BS3680 Rectangular Weir. ..... 80
BS3680 Rectangular Broad Crested Weir. ..... 82
Point of Measurement ..... 82
Calculations ..... 82
Special Devices. ..... 83
Point of Measurement ..... 83
Calculations ..... 84
Universal Calculations ..... 85
Point of Measurement ..... 85
Calculations ..... 85
Chapter 5 Parameter Guide and Descriptions ..... 87
Menu System Diagrams ..... 87
Top Level Menu ..... 87
Application Menu ..... 88
Relays Menu ..... 89
Pump "Advanced" ..... 90
Digital Inputs ..... 91
Data Logs ..... 92
Volume Menu ..... 93
OCM Menu. ..... 94
Display ..... 95
mA Output 1 Menu ..... 96
mA Output 2 Menu ..... 96
Compensation ..... 97
Stability Menu ..... 97
Echo Processing Menu ..... 98
System Menu ..... 99
Device Comm Menu ..... 100
Test Menu ..... 101
Parameter Listing. ..... 102
Application Parameters ..... 102
System Units ..... 102
Operation ..... 102
Dimensions ..... 104
Relay Parameters ..... 106
Alarms ..... 107
Pumps ..... 115
Control ..... 120
Miscellaneous ..... 125
Common Parameters ..... 127
Pump "Advanced" Parameters ..... 128
Pump Run On ..... 128
Starting ..... 128
Stopping ..... 129
Pump Exercising ..... 129
Wall Cling. ..... 130
Digital Inputs ..... 131
About Digital Inputs. ..... 131
Digital Input Parameters ..... 137
Common Par. ..... 137
Digital Inputs. ..... 139
Data Log Parameters ..... 142
Totaliser Audits. ..... 142
Temperature. ..... 142
Pump Logs ..... 143
Volume. ..... 144
Conversion ..... 145
Breakpoints ..... 149
Tables ..... 150
OCM Parameters ..... 151
PMD Setup ..... 151
Dimensions ..... 154
Calculations ..... 157
Breakpoints ..... 158
Tables ..... 159
Average Flow ..... 159
Display Parameters ..... 159
Options ..... 159
Failsafe ..... 161
Auxiliary ..... 162
Totaliser. ..... 164
Bargraph ..... 166
mA Output 1 Parameters ..... 167
Range ..... 167
Operation ..... 168
Setpoint ..... 169
Limits ..... 169
Trim. ..... 170
Failsafe ..... 170
Allocation ..... 171
mA Output 2 Parameters ..... 172
Range ..... 172
Operation ..... 173
Setpoint ..... 174
Limits ..... 174
Trim. ..... 175
Failsafe ..... 175
Allocation ..... 176
Compensation Parameters ..... 177
Offset ..... 177
Temperature ..... 177
Velocity ..... 178
Stability Parameters ..... 179
Damping ..... 179
Indicator ..... 179
Rate. ..... 179
Filters ..... 180
Echo Processing Parameters ..... 181
Transducer 1 Status ..... 181
Transducer 2 Status ..... 182
System Parameters ..... 183
Passcode ..... 183
Backup ..... 183
System Information ..... 184
Date \& Time ..... 185
LED Colour ..... 185
Watchdog ..... 186
Daylight Saving Time ..... 187
Device Comm. ..... 190
RS232 Set Up ..... 190
RS 485 Set Up (Optional) ..... 190
Remote Alarm ..... 191
Test Parameters. ..... 192
Simulation ..... 192
Test Setup ..... 193
Hardware ..... 194
Chapter 6 Troubleshooting ..... 197
Chapter 7 Disposal ..... 198
Notes ..... 199

Congratulations on your purchase of a Pulsar Ultra Twin. This quality system has been developed over many years and represents the latest in high technology ultrasonic level measurement and control.

It has been designed to give you years of trouble free performance, and a few minutes spent reading this operating manual will ensure that your installation is as simple as possible.

## About this Manual

It is important that this manual is referred to for correct installation and operation.

There are various parts of the manual that offer additional help or information as shown.

## Tips



## TIP

At various parts of this manual you will find tips to help you.

## Additional Information

## Additional Information

At various parts of the manual, you will find sections like this that explain specific things in more detail.

## References

- See Also

References to other parts of the manual

## About the Ultra Twin

Ultra Twin has two independent points of measurement, the wall mount model provides a dedicated display to each point of measurement, whilst the fascia model, whilst in RUN, will show detail of one point of measurement in the main display line, with the second point being displayed on the auxiliary display line. In both models, the display will provide information relevant to the point of measurement selected whilst in RUN and PROGRAM mode.


Ultra Twin combines premium specification with high performance in a most versatile system which is quickly configurable offering a choice of applications in any combination, between the two points of measurement, of three specific applications i.e. level or volume measurement, pump control or flow measurement.

## Functional Description

Ultra Twin sends a transmit pulse to the transducer(s), which emits an ultrasonic pulse perpendicular to the transducer face, and the returned echo is sent back to the Ultra Twin. The time taken to receive the echo is measured and the distance from the transducer face to the surface being monitored is calculated.

Ultra Twin can measure from zero to 40 m from the transducer to the surface being monitored, dependent on the application chosen and transducer used.

Six user-definable relays can be programmed to activate alarms, pump starters, or other control equipment, and can be allocated to either point of measurement. Also provided are four user definable digital inputs on the wall mount model and seven on the fascia mount model, which can be allocated to either point of measurement. There is an isolated $4-20 \mathrm{~mA}$ output for each point of measurement that can be connected to a recorder or PLC, to monitor level space, distance, volume, OCM head or flow (dependant on the application chosen), independently from that shown on the display. There is an RS232 port, so that the Ultra Twin can be operated remotely by a PC or other equipment.

Ultra Twin can be programmed either by the built-in keypad (standard), or by PC via the RS 232 Serial Interface (optional).

All parameters are stored in non-volatile memory, so are retained in the event of power interruption. A second backup copy of all parameters can also be retained in the Ultra Twin memory, in case an alternative set of parameters needs to be stored.

The system utilises the unique DATEM software (Digital Adaptive Tracking of Echo Movement). This is a proven digital mapping technique developed especially for the Pulsar Ultra range, which gives the system unequalled ability when identifying the "true target level" in the face of competing echoes from pipes, pumps or other obstructions. Coupled with the powerful, longrange abilities of the 'all new' dB transducer range, the Ultra Twin lives up to its reputation as the most reliable ultrasonic level measurement system available.

The Pulsar Ultra Twin ultrasonic level controller has been designed to provide maintenance-free fit and forget performance.

## Product Specification

Physical
Wall Mount
Overall Outside dimensions
Weight
Enclosure material/description

Cable entry detail

Fascia Mount
Outside dimensions
Weight
Enclosure material/description

Transducer cable extensions
Maximum separation
$235 \times 184 \times 120 \mathrm{~mm}$
Nominal 1 kg
Polycarbonate, flame resistant to UL94-5V
10 cable entry knock outs, $1 \times \mathrm{M} 16$,
$5 \times$ M20 underside
$4 \times 18 \mathrm{~mm}$ dia (PG11) at rear
$200 \times 112 \times 108 \mathrm{~mm}$
Nominal 1.3kg
Stainless Steel back, Polycarbonate
UL94-V0 front and bezel
2-core screened
$1000 \mathrm{~m}, 500 \mathrm{~m}$ for dBR16

| Environmental |  |
| :--- | :--- |
| IP Rating (Wall) | IP65 |
| IP Rating (Fascia) | IP64 |
| Max. \& min. temperature (electronics) | $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ |
| Flammable atmosphere approval | Safe area: compatible with approved <br> dB transducers (see transducer spec' <br> sheet) |
|  |  |
|  | See EU Declaration of Conformity |

Page 4

| Digital Inputs |  |
| :---: | :---: |
| Wall Mount x4 | Min. Input Voltage 4.5VDC |
| Fascia Mount x7 | Max. Input Voltage 30VDC (Max Current 3mA) |
|  | 24VDC Input Supply maximum total current 24 mA . |
| Displays |  |
| Wall mount x 2 | 6 digits plus 12-character text, plus |
| Fascia Mount x1 | bar graph with direction indicators, remote communicator identifier, and program/run/test mode indicators |
| Programming |  |
| On-board programming PC programming | By integral keypad via RS232 |
| Programming security | Via passcode (user selectable and adjustable) |
| Programmed data integrity | Via non-volatile RAM, plus backup |
| Supply |  |
| Power supply | $\begin{aligned} & 115 \mathrm{~V} \mathrm{ac}+5 \% /-10 \% 50 / 60 \mathrm{~Hz}, \\ & 230 \mathrm{~V} \mathrm{ac}+5 \% /-10 \% 50 / 60 \mathrm{~Hz}, \\ & \text { dc } 18-36 \mathrm{~V} \\ & 10 \mathrm{~W} \text { maximum power (typically } 6 \mathrm{~W} \text { ) } \end{aligned}$ |
| Fuses | 100 mA at 230 V AC (fitted as standard to wall units) <br> 200 mA at 115 V AC (fitted as standard to fascia units) |

Pulsar Process Measurement Limited operates a policy of constant development and improvement and reserve the right to amend technical details as necessary.

## EU Declaration of Conformity

$\qquad$

## EU DECLARATION OF CONFORMITY

## P U L S A R Ultra Twin

This declaration of conformity is issued under the sole responsibility of the manufacturer

| Relevant Directive(s) | 2014/30/EU - EMC Directive and its amending directives |
| :---: | :---: |
|  | 2014/35/EU - Low Voltage Directive and its amending directives |
|  | 2011/65/EU - RoHS Directive and its amending directives |
| Manufacturer's Name | Pulsar Process Measurement Ltd |
| Manufacturer's Address | Cardinal Building, Enigma Business Commercial Centre, Sandy's Road, Malvern Worcestershire, WR14 1JJ, UK |
| Apparatus | Pulsar Ultra Twin Wall \& Fascia, dB Transducer series |
| Type of Equipment | Measurement and process control |
| Standards Applied | EN 61010-1 Safety requirements for electrical equipment for measurement, control, and laboratory use |
|  | EN 61326-1:2013 Equipment class, industrial |


| Signed | Date: <br> $20^{\mathrm{h}}$ June 2017 <br> Rev 4.0 |
| :--- | :--- |
| Name: Jeff Allan (BSc.) Engineer <br> Pulsar Process Measurement Ltd |  |

## Unpacking

## Important Information

All shipping cartons should be opened carefully. When using a box cutter, do not plunge the blade deeply into the box, as it could potentially cut or scratch equipment components. Carefully remove equipment from each carton, checking it against the packaging list before discarding any packaging material. If there is any shortage or obvious shipping damage to the equipment, report it immediately to Pulsar Process Measurement Limited.

## Power Supply Requirements

The Ultra Twin can operate from AC supply or from a DC battery. The AC is $\mathbf{1 1 5 V} \mathbf{+ 5 \% / - 1 0 \% ~ 5 0 / 6 0 H z}$ or $\mathbf{2 3 0 V} \mathbf{+ 5 \% / - 1 0 \% ~ 5 0 / 6 0 H z}$, depending on the position of the selector switch. The DC is $\mathbf{1 8 - 3 6 V}$. In all cases the Ultra Twin will typically consume 6 W of power, with a maximum of 10 W .

## Location

All electronic products are susceptible to electrostatic shock, so follow proper grounding procedures during installation.

The Ultra Twin must be mounted in a non-hazardous (safe) area, and the transducer fitted in the hazardous area.


When choosing a location to mount the enclosure, bear in mind the following:

- Ensure that the Ultra Twin is installed in a "Safe", non-hazardous, area.
- For a clear view of the LCD display, it is recommended that it is mounted at eye level.
- The mounting surface is vibration-free.
- The ambient temperature is between $-20^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$.
- There should be no high voltage cables or inverters close by.


## Dimensions

## Wall mount

The dimensions of the wall fixing holes are as shown below.

## FIXING CENTRES



The Ultra Twin should be mounted by drilling three holes suitable for size 8 screws (length to suit your application), and fixing the top screw in place. Hang the unit on this and fix the two remaining screws by removing the terminals access cover to access the pre-drilled holes.

The full dimensions of the Wall enclosure are as shown below.


## Cable Entry

There are 6 cable gland knock-outs on the base of the wall mount Ultra Twin ( $5 \times \mathrm{M} 20,1 \times \mathrm{M} 16$ ) and 4 on the rear ( $4 \times 18 \mathrm{~mm}$ dia (PG11)). Select which ones you wish to take out, and remove them by using a circular cutter, such as a tank cutter. Take care not to damage the circuit board inside whilst undertaking this. Do not use a hammer, as this may cause damage to the enclosure.

It is recommended that you use suitable cable glands to ensure that the ingress rating is maintained and that they be tightened to the manufacturers recommended settings.

## Fascia Mount

The Fascia Mount Ultra Twin should be installed by cutting a hole in the panel as detailed below.


The full dimensions of the Fascia mount enclosure are as shown below:


## Terminal Connection Details

## Wall Mount

The terminal strip is as detailed below. There is also a wiring diagram inside the terminals access cover.


Fascia Mount







| Of $1 \mathrm{IN}(42)$ |
| :--- |
| Of $0 \mathrm{~V}(43)$ |
| O O $24 \mathrm{~V}(44)$ | $\qquad$




SERIAL PORT(57)

$+(25)$

- (24)



## Terminal Connections

## Power

The Ultra Twin can operate from mains AC and automatically from DC or battery backup in the event of power failure or can be operated permanently from DC or batteries.

## Transducer

The transducer should be installed, and connected, in accordance with the installation instructions contained in the Transducer User Guide.

The entire range of, standard dB transducers are certified for use in hazardous areas and different models, for each, are available for use in Zone 1 or Zone 0.

Wire the transducer to the Ultra Twin's transducer terminals, terminal numbers will depend on the unit type, as follows:

## Transducer 1

|  | Terminal Connection Details |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Unit Type | Red <br> Power | White <br> Signal | Black <br> 0 volts | Green <br> Screen |
| Wall Mount | 45 | 46 | 47 | 47 |
| Fascia Mount | 32 | 31 | 30 | 30 |

## Transducer 2

|  | Terminal Connection Details |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Unit Type | Red <br> Power | White <br> Signal | Black <br> 0 volts | Green <br> Screen |
| Wall Mount | 48 | 49 | 50 | 50 |
| Fascia Mount | 35 | 34 | 33 | 33 |

When using 2-core screened extension cable, the Black and Green wires of the transducer should be connected to the screen of the extension cable, which in turn should be connected to the appropriate 0 volts terminal of the Ultra Twin.

## ATEX

For EEx m (Zone 1) applications a transducer certified to Sira 02ATEX5104X is used, and must be supplied via a 4000A breaking fuse, which is fitted as standard to the Ultra Twin level controller.

For EEx ia (Zone 0) a transducer certified to Sira 02ATEX2103X is used, which must be connected to the Ultra Twin via an external Zener barrier.

## FM

For EEx m (Zone 1) applications a transducer certified to FM Class I Div 1 Group A, B, C \& D, ClassII Div 1 Group E, F \& G, Class III is used, and must be supplied via a 1500A breaking fuse, which is fitted as standard to the Ultra Twin level controller.

Restrictions do not use in the presence of these groups of Chemicals, Aliphatic Hydro Carbons, Ketones or Esters

For EEx ia (I.S.) a transducer certified to FM Class I Div 1 Group A, B, C \& D, ClassII Div 1 Group E, F \& G is used, which must be connected to the Ultra Twin via an external Zener barrier.

See transducer label for certification details.

## Important Information

When using the Ultra Twin to measure the differential level between the two points of measurement then transducer one must be located on the upstream side of the application.

## Relay Outputs

The six relays can be programmed for a variety of alarms, pump control, or other process functions and allocated to either point of measurement. The relay contacts are all rated at 5 A at 240 V AC. All connections should be such that the short circuit capacity of the circuits to which they are connected, is limited by fuses rated so that they do not exceed the relay rating.

## Digital Inputs

Where the Ultra Twin is required to provide power for a Device Input the appropriate Digital Input should be wired between the 24VDC supply terminal and the IN terminal. (TOTAL maximum current available, for all digital inputs, four on Wall Mount model and seven on Fascia Mount model, from the 24 VDC supply is 24 mA ). When Device Inputs are self powered, connection of the device should be made between the Common terminal and the IN terminal. (Minimum Input voltage 4.5VDC, Maximum Input voltage 30 VDC with a maximum current of 3 mA ).

## Current Output

There are two mA Outputs which are fully assignable, both outputs are an isolated (floating) mA output (to 150 V ), of $4-20 \mathrm{~mA}$ or $0-20 \mathrm{~mA}$, and the load should not exceed $500 \Omega$.

## Temperature Input

The external temperature sensor allows more localised compensation of the measured distance due to changes in temperature.

There are two models, Type A and Type B as follows:

| Type A | $-25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ |
| :---: | :--- |
| Type B | $-25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |

The temperature sensor should be placed close to the point of measurement.


The unit is connected as follows:

| Description |  | Temperature Sensor |
| :--- | :---: | :---: |
| Power Supply | Terminal 1 Twin Terminal |  |
| Return | Terminal 2 | Terminal 27 |

Temp Source (P1-852, P2-852), should be set to option 4 or 5 depending on the sensor range, set 4 for type A and 5 for type $B$ (see above), the range is specified on the label of the sensor.

## RS232 Serial Interface

If required, you can connect to the serial interface, to operate your Ultra Twin remotely.

## Voltage Selector and Fuse Location

## Wall mount

The voltage selector switch and mains fuse is located, inside the terminal compartment, to the left of the mains terminals, as illustrated below.


## Fascia mount

The voltage selector switch and mains fuse is located under the removable cover at the bottom of the unit, as illustrated below.


## Important Information

Before applying AC power (mains), make sure you have correctly selected the voltage selector switch, as detailed in the preceding pages.

Please note that all Fascia units are set to 115 volts AC with a 200 mA fuse fitted, and all Wall units are supplied set to 230 volts AC for safety reasons, and a 100 mA fuse fitted as standard.

Never operate the Ultra Twin with terminal access exposed.
An external switch or circuit breaker should be installed near to the Ultra Twin to allow the supply to be removed during installation and maintenance. In addition, the relay contacts should also have a means of isolating them from the Ultra Twin.

Interconnecting cables must be adequately insulated in accordance with local regulations. Strip back 30 mm of the outer insulation of the cable. Strip 5 mm of insulation from the end of each conductor. Twist all exposed strands of the conductor together. Insert the stripped conductor into the terminal block as far as it will go and tighten the terminal block screw. Ensure that all strands are firmly clamped in the terminal block and that there is no excess bare conductor showing, and no stray strands.

## DON'T FORGET

## Make sure you move the voltage selector switch to the correct position for your supply.

## Important Information

If the equipment is installed or used in a manner not specified in this manual, then the protection provided by the equipment may be impaired.

## Preparation for Operation

Before switching on, check the following:
$\checkmark$ The Ultra Twin is mounted correctly and is in a 'safe' area.
$\checkmark$ The power supply is correctly installed.
$\checkmark$ The voltage selector switch is in the correct position.
$\checkmark$ The relays are connected correctly.

## Maintenance

There are no user serviceable parts inside your Ultra Twin, except the mains fuse. If you experience any problems with the unit, then please contact Pulsar Process Measurement for advice.

To clean the equipment, wipe with a damp cloth. Do not use any solvents on the enclosure.

## Important Information

Please note that the on-board Lithium battery, mounted to the processor PCB, is not user serviceable.

## Important Information

The unique DATEM software comes into operation as soon as power is applied and is designed to monitor a moving level or target with the transducer in a fixed position.

If, after any period of use, it should become necessary to move the transducer, for any reason, from its original operating position, switch off the Ultra Twin, before proceeding, to prevent any undesirable updates to the DATEM trace. If after moving the transducer the reading is not as expected, please refer to Chapter 6 Troubleshooting.

This page left blank intentionally

## Chapter 3 How To Use Your Ultra Twin

## Operating the Controls

## Display

On the wall mount model, there are two identical displays, by default, the top display will provide information on the current mode of operation, and status of the remote communication for point 1 (transducer 1), while the bottom display provides the same information for point 2 (transducer 2). In the case of the fascia model, while in the RUN mode, the single display will provide information for point 1 (transducer 1) on the main display line and the auxiliary display provides the same information for point 2 (transducer 2).

When in Program Mode the display of the fascia mount model can be "toggled" by pressing to change from point 1 to point 2 to access parameters on each point.

While in the Run Mode the displays will show, the current level reading and its units of measure, along with status messages with regards to the Transducer, Echo reception and Fail Safe Mode. Additionally, they can be programmed independently to provide status messages on alarms, pumps etc.

When in the Program mode the display is used to read information on the Menu System, Point of Measurement, Parameter Number and parameter details and values, which can be entered.

During Test Mode, the display is used to monitor the simulated level. A bar graph is also provided which will provide a visual reading of the level, in percentage of span.


1) Mode status enunciator displays the current mode of operation.
2) Main 6-digit display:

Run Mode, current measurement displayed, dependent on mode and measurement unit's chosen, and value of Hot Key function selected. Program Mode displays parameter number and values entered for parameters.
Test Mode displays simulated level.
3) Auxiliary Display, scrolling twelve-digit display.

Run Mode, displays measurement units (P104), status messages on signal and transducer, detail of Hot Key function selected. It can be also programmed to provide notification messages on alarms and pumps etc.
for full details please refer to Display Parameters in the relevant parameter listing.
Program Mode displays Menu and Sub Menu headings, parameter details and options.
4) Communicator status enunciator displays the status of, Remote

Communicator (rack and panel versions only) or remote PC connection.
5) Bargraph, display, gives visual indication of measurement in \% of span.
6) Level indicators:

Run Mode, indicates in which direction the level is moving.
Program Mode indicates at which level of the menu system you are at.

There are two main operating modes for your Ultra Twin, Run Mode and Program Mode. There is also a Test Mode, used for checking the set-up. All modes are now described.

## Run Mode

This mode is used once the Ultra Twin has been set up in program mode. It is also the default mode that the unit reverts to when it resumes operation after a power failure.

When the Ultra Twin is switched on for the first time, it will display, in metres, the distance from the transducer face to the target. All relays by default are switched off.

After programming is complete, any relays that are set will operate when the level reaches the relevant setpoint, on the point of measurement it has been allocated to, and the LED's will change colour (unless specifically switched off).

## Program Mode

This mode is used to set up the Ultra Twin or change information already set. This is achieved by using the built-in keypad or, alternatively the unit can be set up with a PC via the RS 232 Serial Interface.

Entering a value for each of the parameters that are relevant to your application provides all the programming information.

## How to Access Program Mode

To enter program mode, you simply enter the passcode, via the keypad, followed by the ENTER key. The default passcode is 1997, so you would press the following:


## Note

There is a time-out period of 15 minutes when in program mode, after which time run mode will be resumed if you do not press any keys.

Once you have entered the program mode the Ultra Twin will automatically access point 1 menu system, and the top display will show "Program Mode" in the Mode Status Line and "Quick Setup" in the Auxiliary Display Line, in the case of the wall mount model, the bottom display, point 2, will be blank. To change from one point to the other point's menu system press the $\square$ hot key, whilst in any Main Menu heading, e.g. Quick Setup, Application etc. and you will toggle between the two points and their relevant menu systems.

## Hot Keys

There are five hot keys on the keypad, which can be used to quickly access common parameters for viewing only, while in Run Mode. Pressing the hot key once will display the first parameter, then repeated pressing will display the others, then the Ultra Twin reverts to Run Mode. In program mode, they have different functions, the functions are shown below.

| Hot Kev | Run Mode | Program Mode |
| :---: | :---: | :---: |
|  | When application is Flow, view non-resettable totaliser(s). View and reset the resettable totaliser(s). When application is Pump, view information on total pump running hours, and individual pump running hours. | Not used with Ultra Twin. |
| $\square$ | Displays echo confidence, echo strength, H.A.L.L., average noise, peak noise or temperature. | Not used with Ultra Twin. |
| $\bigcirc$ | When application is Pump, view total number of pump starts and individual pump starts. | Reset parameter to default setting. |
| mA | Instantaneous mA output. | Not used with Ultra Twin. |
|  | Dependant on application displays Distance, Level, Space, Head, Flow, Volume or rate of change of level. | *Toggle between Point $1 \& 2$ Main Menu System. <br> When programming relays toggle relay setpoints between Ultra Twin's units of measure and $\%$ of span. |
|  | Not used with Ultra Twin. | Takes you to the last parameter edited, when you first enter program mode. |
| $\bigcirc$ | Gives details of unit type, software revision and serial number. | Enter decimal point |

*When using a Fascia mount unit and this hotkey is pressed, the relay light will alternate from Relay 1 to Relay 2 indicating the change between Point 1 $\& 2$.

## Menu Keys

The menu keys have the following functions:

| Menu Key |  |
| :--- | :--- | | Function |
| :--- |
| 1) Arrow keys for moving left and right around the menu |
| system. |
| 2) Used in test mode to simulate the level moving up and |
| down. |\(\left|\begin{array}{l}1) Used to confirm each action (for example select a <br>

menu option) or when entering a parameter number or <br>
value. <br>
2) Used to confirm questions asked by your Ultra Twin <br>

such as before restoring factory defaults.\end{array}\right|\)| Used to navigate up a level in the menu system, and back |
| :--- |
| to run mode. |
| Used to cancel a value entered in error. |

## Numeric Keys

These keys are used for entering numerical information during programming.


There are two means of editing parameters, directly or using the menu system. Each is now described.

## Using the Menu System

The menu system has been designed to make the changing of parameters very simple. There are two levels of menu: Main Menu and Sub Menu.

## Main Menu

The main or top menu is common to both points of measurement and when you first access the program mode your Ultra Twin will display the menu system for point 1. To change form one point to point 2 menu system, press the hot key, whilst in any Main Menu heading, e.g. Quick Setup, Application etc. and you will toggle between the two points and their relevant menu systems.

## Sub Menu

Any sub-menu and the parameters contained in it relating to Point 1 (Transducer 1) is pre-fixed P1, sub-menus and parameters relating to Point 2 (Transducer 2) are pre-fixed P2. Menus and parameters which are common to both Points (both transducers) are pre-fixed $\mathrm{P}^{*}$ e.g. $\mathrm{P}^{*} 104$ Measurement Units.

On the display, there is a line of text that displays the menu system. Pressing the arrow keys scrolls the display between the top-level menu items, (as shown below, starting at Quick Setup).


As you press the cursor keys to scroll left and right between these, you can press ENTER at any time, to select the desired menu heading, and take you to the sub-menu.

Each of these options, along with their sub-menus are described later in this manual. When you move down into the sub-menu, you can scroll round using the arrow keys press ENTER to go to the required section of parameters.
Once you have reached the relevant section, scroll through the parameters, and enter the necessary information. To enter the information, use the numeric keys and then press ENTER, you will then see the message "Saved!" If you press CANCEL, then the change you made will not be saved, and the message "Unchanged!!" will be displayed.

When you have finished, press CANCEL to go back to the previous level. When you have reached the top level, then the Ultra Twin will ask for confirmation before allowing you to go back into run mode. This is done by pressing ENTER at the display prompt.

## Note

You can tell which part of the menu system you are in, as the up/down level indicators, (arrows) next to the bar graph will indicate as follows:

- Top level menu: Down arrow on, to indicate you can move down.
- Sub-menu: Up and Down arrows on, to indicate you can move up to the top level, and down to parameter level.
- Parameter Level: Up arrow on, to indicate you can move up to sub-menu level.
- Parameter Editing: No arrows on.


## Directly Editing Parameters

If you already know the number of the parameter, that you wish to look at or edit, simply access the relevant point of measurement and type the number in at any time while you are in the menu system. So, if you are in either the menu or sub-menu level by pressing a numeric key, you can enter the parameter number directly and jump straight there. You cannot type a parameter number whilst at parameter level, only at one of the two menu levels.

When you are at a parameter, the text line rotates automatically displaying the parameter name, number, the applicable units and the maximum and minimum figure you can enter. The top line shows the value you are setting.

Once you have accessed a parameter, you can either just look at it, or change it.

Once a parameter has been changed, press ENTER and you will see the message "Saved!". If you press CANCEL, then the change you made will not be saved, and the message "Unchanged!!" will be displayed.


You can jump straight to the last parameter you edited, by pressing ' $+/$-' when you first enter program mode.

## Test Mode

Test mode is used to simulate the application and confirm that all parameters and relay setpoints have been entered as expected. During simulation, there is a choice of whether the relays will change state (hard simulation) or not (soft simulation), but the LED's will always change colour as programmed, and the mA output will change in accordance to the chosen mode of operation. If you wish to test the logic of the system that the relays are connected to then select hard simulation, but if you don't wish to change the relay state, then select a soft simulation.

There are two simulation modes, automatic and manual. Automatic simulation will move the level up and down between empty level or the predetermined Start Level ( $\mathbf{P * 9 8 3}$ ) and Pump/Control relay switch points, if you wish to change the direction of the level movement e.g. to go beyond relay setpoints, this can be done by using the arrow keys. In manual simulation, using the arrow keys will allow you to move the level up and down as required.

To enter simulation, first go to program mode. Using the menu system, select menu item 'Test', then sub-menu item P1 or P2'Simulation'. Simply change the value of the parameter P1-980, P2-980 to one of the following:

1= Manual soft simulation
$2=$ Automatic soft simulation
3= Manual hard simulation
$4=$ Automatic hard simulation

To return to program mode, press CANCEL and test mode will end.
When in manual simulation, by default test mode will move the level by 0.1 m steps. Altering the increment $(\mathbf{P} * \mathbf{9 8 1})$ will change this value.

In automatic mode, the rate at which the level moves up and down is set by the increment $(\mathbf{P} * \mathbf{9 8 1}$ in metres, the rate $(\mathbf{P} \mathbf{* 9 8 2})$ in minutes, which can be changed to make the level move up and down faster. E.g. if increment $(\mathbf{P} * \mathbf{9 8 1})$ is set for 0.1 m and rate $(\mathbf{P} * \mathbf{9 8 2})$ is set to 1 min then the level will increase or decrease at a rate of $0.1 \mathrm{~m} / \mathrm{min}$. To make the simulated level move slower, decrease the value in increment $(\mathbf{P} \boldsymbol{\mathbf { 9 8 1 } )}$ or increase the value in rate (P982). To make the simulated level move faster, increase the value in increment $(\mathbf{P 9 8 1})$ or decrease the value in rate $(\mathbf{P} * 982)$.

## Using the RS232 Serial Interface

The RS232 serial interface is used to communicate between the Ultra Twin and a PC using the optional Ultra PC and other associated Pulsar software packages, to obtain information such as data logging and view echo traces upload, download and save parameter files. In addition, it can also be used to control or obtain information using a standard PC or other computer base equipment. To do so, the settings for control are as follows: baud rate $\mathbf{1 9 , 2 0 0}$, 8 data bits, no parity, 1 stop bits.

The device should be connected via the serial port, as shown in Chapter 2 Installation.

To use the device remotely, you need to $\log$ on to start, and $\log$ off when finished. When logged on, Ultra Twin will show 'Remote ON' on the display, and "Communicator OFF" when logged off.

All commands should be followed by a carriage return.
The unit will respond either OK (or a value) if the command is accepted, or NO if it is not.

To $\log$ on, send the command
/ACCESS:pppp where pppp is the passcode (P922).
To log off, send the command
/ACCESS:OFF

To read a parameter value, send the command
/Pxxxx where xxxx is the parameter you wish to read, and the Ultra Twin will respond with the parameter value.

To set a parameter, send the command
/Pxxxx:yy where xxx is the parameter number, and yy is the value you wish to set it to.

Other commands you can use are:
/DISTANCE* (shows current distance)
/LEVEL* (shows current level)
/SPACE* (shows current space)
/HEAD* (shows current OCM head)
/FLOW* (shows current OCM flow)
/TEMPERATURE* (shows current temperature)
/CURRENTOUT** (show the mA output value)
/TOTALISER* (show 10 day totaliser logs)

* add 1 for channel (point) 1 or 2 for channel (point) 2.
** add 1 for mA Output 1 or 2 for $m A$ Output 2
Please consult Pulsar Process Measurement Limited or contact your local Pulsar representative for further details and a full list of available commands.


## Parameter Defaults

## Factory Defaults

## Factory Defaults

When first installing the Ultra Twin, or subsequently moving or using the unit on a new application, before proceeding to program the unit for its intended application it is recommended that you ensure that all parameters are at their default values by completing a Factory Defaults $\mathbf{P} \boldsymbol{* 9 3 0}$, as described in the relevant unit type parameter guide.

When you first switch the Ultra Twin on, it will be reading the distance from the face of the transducer to the surface. It will be indicating in metres, as shown on the display. All relays are set OFF.

The date ( $\mathrm{P} * 931$ ) and time ( $\mathrm{P} * 932$ ) in the Ultra Twin were set at the factory, but may need checking, and amending if, for example the application is in a time zone other than GMT, see relevant unit Parameter listing for full details.


Once you are satisfied with the installation, and the Ultra Twin is reading what you would expect in terms of distance from the face of the transducer to the material level, then you can proceed with programming, for the intended application. It is sensible to program all the required parameters at the same time. The system will be then set-up.

Note that the span is automatically calculated from the empty level, so the empty level should be entered first.

This quick set-up guide shows you how to get up and running in a few minutes in just four easy steps after installing your Ultra Twin.

## Enter Program Mode

First you need to go from run mode into program mode. Assuming the passcode is the default 1997, then you should enter this.


## Choose Quick Setup

Now you need to go into the quick setup. You will see on the menu the words 'Quick Setup', which is the first item on the menu system. By default, the Ultra Twin will always access point 1 menu system, to change to point 2 menu, press the hot key. Try pressing the two arrow keys to see some more menu options, but return to Quick Setup, and press


This takes you to the common applications parameters, and you will see some options appearing on the display.

## Note

If you have already setup a common application, then there will be a number shown other than 0 , and you will see messages showing what the current setup is. If you want to reset this and start again, press 0 (which will reset all the quick setup parameters), otherwise pressing ENTER will allow you to edit the parameters that have been set.

There are three categories of application, which are all described later in this chapter. They are level/volume, pump or flow all with the choice of control functions and alarms.

## Level or Volume

If you want to set-up a level or volume application, as described in the following examples, then choose $\mathbf{1}$ for Level/Vol. You will then be given a choice of $\mathbf{1}=$ Level or $\mathbf{2}=$ Volume.

## Choose Your Application

If you want to set-up a basic level monitoring application, as described in the following example 1, then choose $\mathbf{1}$ for Level/Vol. and then $\mathbf{1}$ for level.

If you want to set-up a level monitoring application with control relays, as described in the following example 2, then choose $\mathbf{1}$ for Level/Vol. followed by $\mathbf{1}$ for level and choose either control down (press 1) or control up (press 2).

If you want to set-up a volume application, as described in the following example 3, then choose $\mathbf{1}$ for Level/Vol. followed by $\mathbf{2}$ for volume, you then need to decide if any control function is required and choose the appropriate option no control (press 0), control down (press 1) or control up (press 2).

Once you have chosen your application you will be asked a series of questions which are answered by choosing the appropriate option as detailed in the flow chart below. Once all the questions have been answered you will be prompted to provide further information, as detailed in the tables below, in order to complete the programming of the unit.


| Parameter | Default | Description |
| :--- | :--- | :--- |
| P101 Transducer | $2=\mathrm{dB6}$ | Type of transducer being used. |
| P102 Material | $1=$ liquid | Material in the vessel, either liquid <br> or solid. If the solid lays flat, then it <br> can be entered as liquid. |
| P104 <br> Measurement <br> Units | $1=$ metres | Select units to be used for <br> programming measurement <br> information. |
| P105 <br> Empty Level | 6.00 m | Distance from the face of the <br> transducer to the material at the <br> bottom of the vessel. |
| P106 <br> Span | 5.70 m | Distance from the empty level (0\% <br> full) to span (100\% full). |

If you have selected a Volume Application, you will now be prompted to enter details required for the calculation of volume

| Parameter | Default | Description |
| :--- | :--- | :--- |
| P600 <br> Vessel Shape | 0=Cyl. Flat <br> Base | Shape of vessel being monitored. |
| P601-P603 <br> Vessel <br> Dimensions | dependant on <br> vessel shape <br> selected. | Enter Vessel dimensions as required |
| P605 | $3=$ Cubic m | Selects volume units required. |
| Volume units | Read Only | Displays the calculated Volume in <br> P605 units. |
| P607 <br> Max Volume |  |  |


| Parameter | Default | Description |
| :---: | :---: | :---: |
| P213/P214 <br> Relay 1 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Level control. Depends on application. |
| $\overline{\text { P223 / P224 }}$ <br> Relay 2 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Level control. Depends on application. |
| P233 / P234 <br> Relay 3 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Level control. Depends on application. |
| P243 / P244 <br> Relay 4 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Level control. Depends on application. |
| P253 / P254 <br> Relay 5 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Level control. Depends on application. |
| P263 / P264 <br> Relay 6 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Level control. Depends on application. |
| $\begin{aligned} & \hline \text { P830 } \\ & \text { mA Out Range } \end{aligned}$ | $2=4$ to 20 mA | Determines the mA output range. $\begin{aligned} & 0=\text { Off, } 1=0 \text { to } 20 \mathrm{~mA} \\ & \mathbf{2}=\mathbf{4} \text { to } \mathbf{2 0 m A}, 3=20 \text { to } \end{aligned}$ $0 \mathrm{~mA}, 4=20 \text { to } 4 \mathrm{~mA} \text {. }$ |
| $\overline{P 870}$ <br> Fill Damping | $10.00 \mathrm{~m} / \mathrm{min}$ | Rate of maximum fill rate (set above the actual fill rate of the vessel). |
| $\begin{array}{\|l\|} \hline \text { P871 } \\ \text { Empty Damping } \end{array}$ | $10.00 \mathrm{~m} / \mathrm{min}$ | Rate of maximum empty rate (set above the actual empty rate of the vessel). |

The default values used for determining the relay setpoints, when setting Alarm and Control relays, via the Quick Setup menu are entered as a \% of span and are as follows.

| Application | Number of <br> Cntl Relays | Cntl Relay <br> Number | On <br> Setpoint | Off <br> Setpoint |
| :--- | :--- | :--- | :---: | :---: |
| Cntl. Down | One | Control 1 | $80 \%$ | $20 \%$ |
| Cntl. Down | Two | Control 1 | $80 \%$ | $20 \%$ |
|  |  | Control 2 | $70 \%$ | $20 \%$ |
| Cntl. Down | Three | Control 1 | $80 \%$ | $20 \%$ |
|  |  | Control 2 | $70 \%$ | $20 \%$ |
|  |  | Control 3 | $60 \%$ | $20 \%$ |
| Cntl. Down | Four | Control 1 | $80 \%$ | $20 \%$ |
|  |  | Control 2 | $70 \%$ | $20 \%$ |
|  |  | Control 3 | $60 \%$ | $20 \%$ |
|  |  | Control 4 | $50 \%$ | $20 \%$ |
| Cntl. Down | Five | Control 1 | $80 \%$ | $20 \%$ |
|  |  | Control 2 | $70 \%$ | $20 \%$ |
|  |  | Control 3 | $60 \%$ | $20 \%$ |
|  |  | Control 4 | $50 \%$ | $20 \%$ |
|  |  | Control 5 | $40 \%$ | $20 \%$ |
| Cntl. Down $\operatorname{Six}$ | Control 1 | $80 \%$ | $20 \%$ |  |
|  |  | Control 2 | $70 \%$ | $20 \%$ |
|  |  | Control 3 | $60 \%$ | $20 \%$ |
|  |  | Control 4 | $50 \%$ | $20 \%$ |
|  |  | Control 5 | $40 \%$ | $20 \%$ |
|  |  | Control 6 | $30 \%$ | $20 \%$ |


| Application | Number of <br> Cntl Relays | Cntl Relay <br> Number | On <br> Setpoint |  |
| :--- | :--- | :--- | :--- | :--- |
| Cntl. Up | One | Control 1 | $20 \%$ | Off <br> Setpoint |
| Cntl. Up | Two | Control 1 | $20 \%$ | $80 \%$ |
| Cntl. Up | Three | Control 2 | $30 \%$ | $80 \%$ |
|  |  | Control 1 | $20 \%$ | $80 \%$ |
|  |  | Control 3 | $30 \%$ | $80 \%$ |
| Cntl. Up | Four | Control 1 | $20 \%$ | $80 \%$ |
|  |  | Control 2 | $30 \%$ | $80 \%$ |
|  |  | Control 3 | $40 \%$ | $80 \%$ |
|  |  | Control 4 | $50 \%$ | $80 \%$ |
|  |  | Control 1 | $20 \%$ | $80 \%$ |
| Cntl. Up | Five | Control 2 | $30 \%$ | $80 \%$ |
|  |  | Control 3 | $40 \%$ | $80 \%$ |
|  |  | Control 4 | $50 \%$ | $80 \%$ |
|  |  | Control 5 | $60 \%$ | $80 \%$ |
| Cntl. Up | Six | Control 1 | $20 \%$ | $80 \%$ |
|  |  | Control 2 | $30 \%$ | $80 \%$ |
|  |  | Control 3 | $40 \%$ | $80 \%$ |
|  |  | Control 4 | $50 \%$ | $80 \%$ |
|  |  | Control 5 | $60 \%$ | $80 \%$ |
|  |  | Control 6 | $70 \%$ | $80 \%$ |


| Relay <br> Function | Relay I.D. | On <br> Setpoint | Off <br> Setpoint |
| :---: | :---: | :---: | :---: |
| Alarm | HiHi | $90 \%$ | $85 \%$ |
| Alarm | High | $85 \%$ | $80 \%$ |
| Alarm | Low | $10 \%$ | $15 \%$ |
| Alarm | LoLo | $5 \%$ | $10 \%$ |

## Note

When using the Quick Setup Menu relays will be allocated to the point of measurement you are currently setting up and the availability of relays will depend on the number of relays used when setting up the previous point of measurement via the Quick Setup Menu for that point.

## Example 1 Level Monitoring with Alarms

A vessel, containing a liquid that has a variation in level that is to be monitored, with a high-level alarm set on Relay 1, and low-level alarm set on Relay 2.

The application is to be assigned to Point (transducer) 1.
$\longleftarrow$ empty distance (P1-105), 3.5m


In this example, when the level rises to 2.38 m , Relay 1 will come on until the level drops to 2.24 m when it will turn off. If the level drops to 0.28 m , then Relay 2 will come on until it rises 0.42 m when it will turn off.

The display will show the level in the tank.
The mA output 1 will be representative of level where $4 \mathrm{~mA}=$ empty level $(0 \%)$ and $20 \mathrm{~mA}=2.8 \mathrm{~m}(100 \%)$.

To program the Ultra Twin for Example 1 Level Monitoring with alarms by using the Quick Setup menu proceed as follows.

## If required access the Program Mode

Key in the passcode 1997 and press ENTER
At the Quick Setup menu press ENTER and as prompted, by the questions, select the relevant option and ENTER.

| Question | Option |
| :--- | :--- |
| Application | $1=$ Level/Vol. |
| Level/Volume | $0=$ No Control |
| Control | $2=2$ Alarms |
| No. of Alarms | $1=$ High |
| Type Alarm 1 | $1=$ Set Relay 1 |
| Alarm No 1 | $2=$ Low |
| Type Alarm 2 | $2=$ Set Relay 2 |
| Alarm No 2 | $2=$ dB6 |
| Xducer (P1-101) | $1=$ Liquid |
| Material (P1-102) | $1=$ metres |
| Measnt Units (P*104) | Empty Level (P1-105) |
| Epan (metres) |  |
| Span (P1-106) | 2.8 (metres) |

Programming is now complete and the unit can be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to the Run Mode.

## Note

If relay setpoints do not meet the exact requirements of the application, they can be modified to suit by pressing ENTER when, "For More Options Hit Enter", is displayed and entering new values to relay setpoints as required. Alternatively, the relevant relay setpoint can be accessed either by the main menu system or directly via parameter number and changed as necessary.

## Example 2 Level Monitoring and Control (up or down)

A vessel, containing a liquid that has a variation in level that is to be monitored, and when the level reaches a specific point, the vessel is pumped down, with the fluid being transferred to another process. The pump will be assigned to Relay 1 a High Alarm to Relay 2 and Low Alarm to Relay 5.

The application is to be assigned to Point (transducer) 2.


In this example, there is a pump (Relay 1), which will come on if the level rises to 2.24 m and go off when the level drops to 0.7 m . (control down). If the level rises to 2.4 m , then the high-level alarm (Relay 2) will come on until the level drops to 2.24 m . If the level falls to 0.28 m , then the low-level alarm (Relay 5) will come on until the level rises to 0.42 m .

Alternatively, if it is a control up application, then the on and off points for the control relay are reversed, so the pump comes on when the level is at 0.7 m and goes off when it rises to 2.24 m .

The display will show the level in the tank and mA output 2 will be representative of level where $4 \mathrm{~mA}=$ empty level $(0 \%)$ and $20 \mathrm{~mA}=2.8 \mathrm{~m}$ (100\%).

To program the Ultra Twin for Example 2 Level Monitoring and Control by using the Quick Setup menu proceed as follows.

## If required access the Program Mode

Key in the passcode 1997 and press ENTER
At the Quick Setup menu press the $\square$ hot key and toggle to Point 2 display and press ENTER and then as prompted, by the questions, select the relevant option and ENTER.

| Question | Option |
| :---: | :---: |
| Application | 1= Level/Vol. |
| Level/Volume | 1= Level |
| Control | 1= Control Down |
| No. of Controls | 1 = 1 Relay |
| Control No. 1 | 1 = Set Relay 1 |
| No. of Alarms | $2=2$ Alarms |
| Type Alarm 1 | 1 = High |
| Alarm No. 1 | $2=$ Set Relay 2 |
| Type Alarm 2 | 2 Low |
| Alarm No. 2 | 5 =Set Relay 5 |
| Xducer (P2-101) | $2=\mathrm{dB} 6$ |
| Material (P2-102) | 1= Liquid |
| Measnt Units (P*104) | $1=$ metres |
| Empty Level (P2-105) | 3.5 (metres) |
| Span (P2-106) | 2.8 (metres) |

Programming is now complete, and the unit can be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to the Run Mode.

## Note

If relay setpoints do not meet the exact requirements of the application, they can be modified to suit by pressing ENTER when, "For More Options Hit Enter", is displayed and entering new values to relay setpoints as required. Alternatively, the relevant relay setpoint can be accessed either by the main menu system or directly via parameter number and changed as necessary.

## Example 3 Volume Application

A cylindrical tank with a diameter of 7.0 feet and a flat base that is typically used to temporarily hold liquid, and you wish to know the volume of liquid. You also require a high alarm (Relay 4) and a low alarm (Relay 5) and when the level reaches a specific point, the vessel is pumped down (Relay 1), with the fluid being transferred to another process.

The application is to be assigned to Point (transducer) 1.
$\longleftarrow$ empty distance (P1-105), 3.5m


In this example, there is a control down relay (Relay 1 ), which will come on if the level rises to 2.24 m , and go off when the level drops to 0.7 m . (control down). If the level rises to 2.4 m , then the high-level alarm (Relay 4) will come on until the level drops to 2.24 m . If the level falls to 0.28 m , then the low-level alarm (Relay 5) will come on until the level rises to 0.42 m .

The display will show the volume of fluid in the tank and the mA output 1 will be representative of Volume where $4 \mathrm{~mA}=$ empty $(0 \%)$ and $20 \mathrm{~mA}=\mathrm{Max}$ Volume ( $100 \%$ ).

To program the Ultra Twin for Example 3 Volume Application with

Control by using the Quick Setup menu proceed as follows.
If required access the Program Mode
Key in the passcode 1997 and press ENTER
At the Quick Setup menu press ENTER and as prompted, by the questions, select the relevant option and ENTER.

| Ouestion | Option |
| :---: | :---: |
| Application | 1= Level/Vol. |
| Level/Volume | 2= Volume |
| Control | 1= Control Down |
| No. of Controls | $1=1$ Relay |
| Control No. 1 | 1 = Set Relay 1 |
| No. of Alarms | $2=2$ Alarms |
| Type Alarm 1 | 1 = High |
| Alarm No. 1 | 4 = Set Relay 4 |
| Type Alarm 2 | $2=$ Low |
| Alarm No. 2 | $5=$ Set Relay 5 |
| Xducer (P1-101) | $2=\mathrm{dB6}$ |
| Material (P1-102) | 1= Liquid |
| Measnt Units (P*104) | $1=$ metres |
| Empty Level (P1-105) | 3.5 (metres) |
| Span (P106) | 2.8 (metres) |
| Vessel Shape (P1-600) | $0=$ Cylindrical Flat Base |
| Vessel Dimensions | Enter Vessel Dimensions as requested (depends on vessel shape chosen) |
| Volume Units | Select as required |
| Max. Volume (Read Only) | Displays the Max Volume as calculated by the Ultra Twin |

Programming is now complete, and the unit can be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to the Run Mode.

## Note

If relay setpoints do not meet the exact requirements of the application, they can be modified to suit by pressing ENTER when, "For More Options Hit Enter", is displayed and entering new values to relay setpoints as required. Alternatively, the relevant relay setpoint can be accessed either by the main menu system or directly via parameter number and changed as necessary.

## Example 4: Differential Control



## Note

In this example, the transducers are mounted at the same height. If the transducers are mounted at different heights, ensure that the empty levels are correct such that there is no differential present when the level is zero on both sides.

In this example the Ultra Twin is being used to control a rake on a screen, which is filtering out solids in the inlet flow to a wastewater treatment plant.

This will be achieved by setting up a level application on both Point 1 and 2 and assigning the relays to the relevant point(s) to obtain the desired control.

A high alarm has been assigned to Point 1 (Transducer 1), on the upstream side and a low alarm, to Point 2 (Transducer 2) on the downstream side. The Diff. Control, to operate the rake is on relay 1, high alarm, on Transducer 1 (upstream), is on relay 2 and, low alarm, on Transducer 2 (downstream) is on relay 3 .

This will operate as follows, when the level rises on the upstream side and/or the level on the downstream side falls, resulting in a differential of 0.14 m , (anywhere within the working span), indicating that the screen is blocked, relay 1 will come on and operate the rake. Once the level on the inflow has decreased and the differential level falls to 0.03 m relay 1 will switch off the rake.

Should the level on the upstream side rise, for any reason, to a level of 2.38 m , relay 2 will operate to give a high alarm, once the level has fallen back to 2.24 m the alarm will go off. A falling level in the downstream side, for any reason, will operate relay 3 at 0.28 m giving an alarm for low level, once the level has risen again to a value of 0.42 m relay 3 will reset.

To program the Ultra Twin for Example 4: Differential Control by using the Quick Setup menu proceed as follows.

## If required access the Program Mode

Key in the passcode 1997 and press ENTER
At the Quick Setup menu for Point 1 press ENTER and as prompted by the questions, select the relevant option and ENTER.

| Question | Option |
| :--- | :--- |
| Level/Vol, Pump or Flow | $1=$ Level/Vol. |
| Level or Volume | $1=$ Level |
| Control | $1=$ Control Down |
| No. of Controls | $1=1$ Control Relay |
| Control No. 1 | $1=$ Set to Relay 1 |
| No. of Alarms | $1=1$ Alarm |
| Type Alarm 1 | $1=$ High Alarm |
| Alarm No.1 | $2=$ Set to Relay 2 |
| Xducer (P1-101) | $2=$ dB6 |
| Material (P1-102) | $1=$ Liquid |
| Measnt Units (P*104) | $1=$ metres |
| Empty Level (P1-105) | 3.5 (metres) |
| Span (P1-106) | 2.8 (metres) |

Press CANCEL to come out of the Quick setup menu for point 1 and press the $\square$ hotkey to switch to point 2 .

At the Quick Setup menu for point 2 press ENTER and as prompted by the questions, select the relevant option and ENTER.

| Question | Option |
| :--- | :--- |
| Level/Vol, Pump or Flow | $1=$ Level/Vol. |
| Level or Volume | $1=$ Level |
| Control | $0=$ No Control |
| No. of Alarms | $1=$ 1 Alarm |
| Type Alarm 1 | $2=$ Low Alarm |
| Alarm No. 1 | $3=$ Set to Relay 3 |
| Xducer (P2-101) | $2=$ dB6 |
| Material (P2-102) | $1=$ Liquid |
| Measnt Units (P*104) | $1=$ metres |
| Empty Level (P2-105) | 3.5 (metres) |
| Span (P2-106) | 2.8 (metres) |

When prompted "For more options hit ENTER", press ENTER. Use the left and right arrow keys and the ENTER key to access the following parameters and change their values to those shown below.

Press ENTER to save the new values.

| Parameter | Value |
| :--- | :--- |
| $\mathrm{P} * 213$, R1 Set 1 | $0.14(\mathrm{~m})$ |
| $\mathrm{P} * 214$, R1 Set 2 | $0.03(\mathrm{~m})$ |

Press CANCEL and when Quick Setup is displayed scroll across to the Relays menu. Press ENTER and press ENTER again when * Relay $\mathbf{1}$ is shown on the screen. Scroll across to $\mathbf{P} * \mathbf{2 1 6}$ and set the following. This will set up the differential control relay.

| Parameter | Value |
| :--- | :--- |
| $\mathrm{P}^{*} 216, \mathrm{R1}$ Alloc. | 5 = Diff.1-2 |

After pressing ENTER to save the parameter, press CANCEL until Relays is displayed on the screen.

On the wall mount model, to display the Differential on the main display line of the upper LCD, Point 1 Level on the auxiliary display of the upper LCD and Point 2 Level on the main display on the lower LCD, change the following parameters. Press the hotkey to switch back to point 1 . The upper LCD should now show Relays. Press the Right arrow key until Display is shown on the screen. Press ENTER and press ENTER again when P1 Options is displayed on the screen. Use the left and right arrow keys and ENTER key to change the following parameter and press ENTER to save the new value.

| Parameter | Value |
| :---: | :---: |
| P1-805, Disp Source | 5 = Diff.1-2 |

After pressing ENTER to save the parameter, press CANCEL to display P1 Options on the screen. Press the Right arrow key until P1 Auxiliary is displayed and press ENTER.

Use the left and right arrow keys and ENTER key to change the following parameter and press ENTER to save the new value.

| Parameter | Value |
| :--- | :--- |
| P1-816, Aux Source | $1=$ Point 1 |

Programming is now complete, and the unit can be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to the Run Mode.

## Pump

If you want to set-up a pump application, as described in the following examples, then choose 2 for pump. You will then be given a choice of $\mathbf{1}=$ Level App., $2=$ Pump Down or $3=$ Pump Up.

## Choose Your Application

If you want to set-up a pump down (sump control) application, as described in the following example 1 then choose 2 for pump followed by $\mathbf{2}$ for pump down.

If you want to set-up a pump up (reservoir control) application, as described in the following example 2 then choose then choose 2 for pump followed by 3 for pump up.

Once you have chosen your application you will be asked a series of questions which are answered by choosing the appropriate option as detailed in the flow chart below. Once all the questions have been answered you will be prompted to provide further information, as detailed in the tables below, in order to complete the programming of the unit.


| Parameter | Default | Description |
| :--- | :--- | :--- |
| P101 Transducer | $2=\mathrm{dB} 6$ | Type of transducer being used. |
| P104 <br> Measurement <br> Units | $1=$ metres | Select units to be used for <br> programming measurement <br> information. |
| P105 <br> Empty Level | 6.00 m | Distance from the face of the <br> transducer to the material at the <br> bottom of the vessel. |
| P106 <br> Span | 5.70 m | Distance from the empty level (0\% <br> full) to span (100\% full). |

For More Options Hit Enter

| Parameter | Default | Description |
| :---: | :---: | :---: |
| P213 / P214 <br> Relay 1 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Pump control. Depends on application. |
| P223 / P224 <br> Relay 2 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Pump control. Depends on application. |
| P233 / P234 <br> Relay 3 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Pump control. Depends on application. |
| P243 / P244 <br> Relay 4 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Pump control. Depends on application. |
| P253 / P254 <br> Relay 5 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Pump control. Depends on application. |
| P263 / P264 <br> Relay 6 <br> ON/OFF <br> setpoints | Factory preset as a \% to appropriate level according to the span already entered. See tables below | Either Alarm or Pump control. Depends on application. |


| Parameter | Default | Description |
| :--- | :--- | :--- |
| P830 <br> mA Out Range | $2=4$ to 20 mA | Determines the mA output <br> range. <br> $0=$ Off, $1=0$ to 20 mA <br> $\mathbf{2 = 4}$ to 20mA, $3=20$ to <br> $0 \mathrm{~mA}, 4=20$ to 4mA. |
| P870 <br> Fill Damping | $10.00 \mathrm{~m} / \mathrm{min}$ | Rate of maximum fill rate (set <br> above the actual fill rate of the <br> vessel). |
| P871 <br> Empty Damping | Rate of maximum empty rate <br> (set above the actual empty <br> rate of the vessel). |  |

The default values used for determining the relay setpoints, when setting Alarm and Pump relays, via the Quick Setup menu are entered as a \% of span and are as follows.

| Application | Number of Pumps | Pump <br> Number | On <br> Setpoint | Off <br> Setpoint |
| :---: | :---: | :---: | :---: | :---: |
| Pump Down | One | Pump 1 | 50\% | 20\% |
| Pump Down | Two | Pump 1 <br> Pump 2 | $\begin{aligned} & 50 \% \\ & 70 \% \\ & \hline \end{aligned}$ | $\begin{aligned} & 20 \% \\ & 20 \% \\ & \hline \end{aligned}$ |
| Pump Down | Three | Pump 1 <br> Pump 2 <br> Pump 3 | $\begin{aligned} & 50 \% \\ & 60 \% \\ & 70 \% \\ & \hline \end{aligned}$ | $\begin{aligned} & 20 \% \\ & 20 \% \\ & 20 \% \\ & \hline \end{aligned}$ |
| Pump Down | Four | Pump 1 <br> Pump 2 <br> Pump 3 <br> Pump 4 | $\begin{aligned} & 40 \% \\ & 50 \% \\ & 60 \% \\ & 70 \% \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 20 \% \\ & 20 \% \\ & 20 \% \\ & 20 \% \\ & \hline \end{aligned}$ |
| Pump Down | Five | Pump 1 <br> Pump 2 <br> Pump 3 <br> Pump 4 <br> Pump 5 | $\begin{aligned} & 40 \% \\ & 50 \% \\ & 60 \% \\ & 70 \% \\ & 75 \% \end{aligned}$ | $20 \%$ $20 \%$ $20 \%$ $20 \%$ $20 \%$ |
| Pump Down | Six | Pump 1 <br> Pump 2 <br> Pump 3 <br> Pump 4 <br> Pump 5 <br> Pump 6 | $\begin{aligned} & 40 \% \\ & 50 \% \\ & 60 \% \\ & 70 \% \\ & 75 \% \\ & 80 \% \end{aligned}$ | $\begin{aligned} & 20 \% \\ & 20 \% \\ & 20 \% \\ & 20 \% \\ & 20 \% \\ & 20 \% \end{aligned}$ |
| Application | Number of Pumps | Pump Number | On <br> Setpoint | Off <br> Setpoint |
| Pump Up | One | Pump 1 | 50\% | 80\% |
| Pump Up | Two | Pump 1 <br> Pump 2 | $\begin{aligned} & 50 \% \\ & 30 \% \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 80 \% \\ & 80 \% \\ & \hline \end{aligned}$ |


| Pump Up | Three | Pump 1 | $50 \%$ | $80 \%$ |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Pump 2 | $40 \%$ | $80 \%$ |
|  |  | Pump 3 | $30 \%$ | $80 \%$ |
| Pump Up | Four | Pump 1 | $60 \%$ | $80 \%$ |
|  |  | Pump 2 | $50 \%$ | $80 \%$ |
|  |  | Pump 3 | $40 \%$ | $80 \%$ |
|  |  | Pump 4 | $30 \%$ | $80 \%$ |
| Pump Up | Five | Pump 1 | $60 \%$ | $80 \%$ |
|  |  | Pump 2 | $50 \%$ | $80 \%$ |
|  |  | Pump 3 | $40 \%$ | $80 \%$ |
|  |  | Pump 4 | $30 \%$ | $80 \%$ |
|  |  | Pump 5 | $25 \%$ | $80 \%$ |
| Pump Up | Six | Pump 1 | $60 \%$ | $80 \%$ |
|  |  | Pump 2 | $50 \%$ | $80 \%$ |
|  |  | Pump 3 | $40 \%$ | $80 \%$ |
|  |  | Pump 4 | $30 \%$ | $80 \%$ |
|  |  | Pump 5 | $25 \%$ | $80 \%$ |
|  |  | Pump 6 | $20 \%$ | $80 \%$ |


| Relay <br> Function | Relay I.D. | On <br> Setpoint | Off <br> Setpoint |
| :---: | :---: | :---: | :---: |
| Alarm | HiHi | $90 \%$ | $85 \%$ |
| Alarm | High | $85 \%$ | $80 \%$ |
| Alarm | Low | $10 \%$ | $15 \%$ |
| Alarm | LoLo | $5 \%$ | $10 \%$ |

## Note

When using the Quick Setup Menu relays will be allocated to the point of measurement you are currently setting up and the availability of relays will depend on the number of relays used when setting up the previous point of measurement via the Quick Setup Menu for that point.

## Example 1 Sump Control (pump down)

A sump is typically used to temporarily hold water or effluent, and when the level reaches a specific point, the sump is pumped down, with the fluid being transferred to another process.

The application is to be assigned to Point (transducer) 1.
$\longleftarrow$ empty distance (P1-105), 3.5m


In this example, there are two pumps, which will be set to alternate duty assist, so they come on alternately. Pump 1 is to be set to Relay 1, Pump 2 to Relay 2, and the high-level alarm to relay 5.

This will operate as follows. During normal operation, pump 1 will come on at 0.84 m , and pump down to 0.56 m . The setpoints are then shifted to pump 2, which will come on first next time.

During peak periods, when pump 1 cannot cope, pump 1 will come on at 0.84 m , pump 2 will come on at 1.4 m , and pump down to 0.56 m . The setpoints are then shifted to pump 2, which will come on first next time.
If neither pump can cope, and the level rises to 2.38 m , then the alarm relay (Relay 5) will come on, and go off when the level falls to 2.24 m . This will indicate insufficient capacity of the pumps. The display will show the level in the sump and mA output 1 will be representative of level where $4 \mathrm{~mA}=$ empty level ( $0 \%$ ) and $20 \mathrm{~mA}=2.8 \mathrm{~m}(100 \%)$

To program the Ultra Twin for Example 1 Sump control (pump down) using the Quick Setup menu proceed as follows.
If required to access Program Mode
Key in the passcode 1997 and press ENTER
At the Quick Setup menu press ENTER and as prompted, by the questions, select the relevant option and ENTER.

| Question | $2=$ Pump |
| :--- | :--- |
| Application | $2=$ Pump Down |
| Level, Pump Up/Down | $2=2$ Pumps |
| No. of Pumps | $3=$ Alt Duty Ass |
| Pump Duty | $1=$ Set to Relay 1 |
| Pump No. 1 | $2=$ Set to Relay 2 |
| Pump No. 2 | $1=1$ Alarm |
| No. of Alarms | $1=$ High |
| Type Alarm 1 | $5=$ Set to Relay 5 |
| Alarm No.1 | $2=$ dB6 |
| Xducer (P1-101) | $1=$ metres |
| Measnt Units (P*104) | 3.5 (metres) |
| Empty Level (P1-105) | 2.8 (metres) |
| Span (P1-106) |  |

Programming is now complete, and the unit can be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to the Run Mode.

## Note

If relay setpoints do not meet the exact requirements of the application, they can be modified to suit by pressing ENTER when, "For More Options Hit Enter", is displayed, and entering new values to relay setpoints as required. Alternatively, the relevant relay setpoint can be accessed either by the main menu system or directly via parameter number and changed as necessary.

## Example 2 Reservoir Control (pump up)

A reservoir is typically used to temporarily hold liquid, and when the level reaches a specific low point, the reservoir is pumped up.

The application is to be assigned to Point (transducer) 2.


In this example, there are two pumps, which will be set to alternate duty assist, so they come on alternately. Pump 1 is to be set to relay 1 , pump 2 to relay 2 , and the low-level alarm to relay 3.

This will operate as follows. During normal operation, pump 1 will come on at 1.96 m and pump up to 2.24 m . The setpoints are then shifted to pump 2, which will come on first next time.

During peak periods, when pump 1 cannot cope, pump 1 will come on at 1.96 m , pump 2 will come on at 1.4 m and pump up to 2.24 m . The setpoints are then shifted to pump 2, which will come on first next time.

If both pumps cannot cope, and the level falls to 0.28 m , then the alarm relay (relay 3) will come on, and go off when the level rises to 0.42 m . This will indicate insufficient capacity of the pumps.

The display will show the level in the sump and the mA output will be representative of level where $4 \mathrm{~mA}=$ empty level $(0 \%)$ and $20 \mathrm{~mA}=2.8 \mathrm{~m}$ (100\%)

To program the Ultra Twin for Example 2 Reservoir Control (pump up) by using the Quick Setup menu proceed as follows.

## If required access the Program Mode

Key in the passcode 1997 and press ENTER
At the Quick Setup menu press the $\square$ hot key and toggle to Point 2 display and press ENTER and then as prompted, by the questions, select the relevant option and ENTER.

| Question | Option |
| :---: | :---: |
| Application | $2=$ Pump |
| Level, Pump Up/Down | 3 = Pump Up |
| No. of Pumps | $2=2$ Pumps |
| Pump Duty | 3 = Alt Duty Ass |
| Pump No. 1 | 1 = Set to Relay 1 |
| Pump No. 2 | $2=$ Set to Relay 2 |
| No. of Alarms | $1=1$ Alarm |
| Type Alarm 1 | $2=$ Low |
| Alarm No. 1 | $3=$ Set to Relay 3 |
| Xducer (P1-101) | $2=\mathrm{dB} 6$ |
| Measnt Units ( $\mathrm{P}^{*} 104$ ) | $1=$ metres |
| Empty Level (P1-105) | 3.5 (metres) |
| Span (P1-106) | 2.8 (metres) |

Programming is now complete, and the unit can be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to the Run Mode.

## Note

If relay setpoints do not meet the exact requirements of the application, they can be modified to suit by pressing ENTER when, "For More Options Hit Enter", is displayed, and entering new values to relay setpoints as required. Alternatively, the relevant relay setpoint can be accessed either by the main menu system or directly via parameter number and changed as necessary.

## Flow

If you want to set-up a flow application, as described in the following examples, then choose 3 for Flow. You will then be given a choice of Primary Measuring Devices to choose from.

## Choose Your Application

There are five categories of Primary Measuring Device, which are all described in this chapter. They are exponential, BS3860 flumes, BS3860 weirs, special and universal.

Calculations for flow can be performed using absolute or ratiometric calculations. The answer will be the same, the choice of calculation method being limited to the amount of information available, with regards to the primary measuring device.

For ratiometric calculation it is normally sufficient to know the maximum flow at maximum head for the device in question. All types of primary measuring devices can be set up with a choice of alarms.

If you want to set-up a basic exponential device, as described in the following example 1, then choose $\mathbf{3}$ for Flow, followed by $\mathbf{1}$ for exponent. You then need to select the primary measuring device for your application from the following available options: suppressed rectangular weir, Cipolletti (trapezoidal) weir, Venturi flume, Parshall flume, Leopold Lagco flume, $\mathbf{V}$ notch weir or other, for any other type of exponential device.

To set-up an application for a BS3680 flume, as described in the following example 2, then choose $\mathbf{3}$ for Flow followed by 2 for $\mathbf{3 6 8 0}$ Flume. You then need to select the primary measuring device for your application from the following available options: rectangular flume with or without hump, Uthroated flume with or without hump.

To set-up an application for a BS3680 weir, as described in the following example 3, then choose 3 for Flow followed by 3 for 3680 Weir. You then need to select the primary measuring device for your application from the following available options: rectangular weir, V notch full $90^{\circ}$ (90degrees), $V$ notch half $90^{\circ}$ ( 53 degree 8 minutes), $V$ notch quarter $90^{\circ}$ ( $\mathbf{2 8}$ degree 4 minutes) or a Broad Crested Weir.

To set-up an application for a device contained in special, choose $\mathbf{3}$ for Flow followed by $\mathbf{5}$ for Special. You then need to select the primary measuring device for your application from the following available options: Palmer Bowlus flume, $\mathbf{H}$-flume or a $\mathbf{V}$ notch, other than BS3680.

For devices, which do not match any of the above devices the application can be setup using a universal flow calculation, to select this option choose $\mathbf{3}$ for Flow followed by 6 for universal. You then need to select the primary measuring device for your application from the following available options: linear flow or curved flow.

Once you have chosen your application you will be asked a series of questions which are answered by choosing the appropriate option as detailed in the flow chart below. Once all the questions have been answered you will be prompted to provide further information, as detailed in the tables below, in order to complete the programming of the unit.


Wait ....

| Parameter | Default | Description |
| :---: | :---: | :---: |
| P101 <br> Transducer | 1 = dB Mach 3 | Type of Transducer to be used. |
| P706 <br> Volume Units | $1=$ Litres | Units of flow as on display and used for calculations. |
| P707 <br> Time Units | 1 = per second | Units of time that volume units will be displayed and calculated in. $1=$ units $/ \mathrm{sec} . \quad 2=$ units $/ \mathrm{min}$. $3=$ units/hour $\quad 4=$ units/day |
| P104 <br> Measurement Units | 1 = metres | Units used to enter dimensions and displayed where appropriate. $\begin{array}{ll} 1=\text { metres } & 2=\text { centimetres } \\ 3=\text { millimetres } & 4=\text { feet } \\ 5=\text { inches } & \\ \hline \end{array}$ |
| P105 <br> Empty Level | 2.5 m | Distance from the face of the transducer to the material at the bottom of the measuring element. |
| P703 <br> Minimum Head | 0.000 m | Distance from empty point (P105) to zero flow. |
| $\begin{aligned} & \text { P704 } \\ & \text { Max Head } \end{aligned}$ | 2.45 m | Distance from zero flow to max flow. It should be noted that any change to P704 updates P106 Span and vice versa. |
| P824 <br> Totaliser Allocation | 1= Point 1 | Enables the Totaliser to a specific point of flow measurement or a combination of flow when both points set to measure Flow. For full list of options see P824 in Chapter 5 Parameter Guide. |
| $\begin{aligned} & \text { P815 } \\ & \text { Aux Mode } \end{aligned}$ | $2=$ Level | Enables the Auxiliary display line to display additional information whilst in RUN mode. For full list of options see P815 in Chapter 5 Parameter Guide. |


| Parameter | Default | Description |
| :---: | :---: | :---: |
| P816 Aux Source | 0=Off | Determines which point or combination of points, that the Auxiliary display line will relate to. For full list of options see P816 in Chapter 5 Parameter Guide. |
| P823 <br> Totaliser Multiplier | $4=* 1$ | Sets the factor by which the calculated volume will be divided or multiplied by before being displayed. $\begin{array}{ll} 1=/ 1000 & 2=/ 100 \\ 3=/ 10 & 4=* 1 \\ 5=* 10 & 6=* 100 \\ 7=* 1,000 & 8=* 10,000 \\ 9=* 100,000 & 10=* 1,000,000 \\ \hline \end{array}$ |

The remaining parameters required to finalise the setup of your application will follow on immediately from the above. These parameters relate to details required to carry out the calculation for flow and will be dependent on the Primary Measuring Device chosen and the method of calculation chosen, please enter values for the parameters concerned as requested.

| Parameter | Default | Description |
| :---: | :---: | :---: |
| P705 <br> Max. Flow | 0.000 | When requested enter the known maximum flowrate, in units of volume (P706) and Time (P707) which occurs at maximum head (P704) |
| P710 <br> Dim. "A" | 0 | When requested enter, in measurement units, P104, the required dimension. |
| P711 <br> Dim. "B" | 0 | When requested enter, in measurement units, P104, the required dimension. |
| $\begin{aligned} & \hline \text { P712 } \\ & \text { Dim. "C" } \end{aligned}$ | 0 | When requested enter, in measurement units, P104, the required dimension. |
| P713 <br> Dim. "D" | 0 | When requested enter, in measurement units, P104, the required dimension. |
| P717 <br> Exponent | Dependent on chosen PMD | Where available the Ultra Twin will automatically enter the default exponent value for the PMD chosen, but this can be changed if required. When P700 $=7$ (Other), enter the exponent value as defined by the manufacturer of the PMD. |
| P718 <br> K Factor |  | Enter the ' K ' factor for the PMD, obtained from the manufacture's specification |


| Parameter | Set Value | Description |
| :---: | :---: | :---: |
| P213 / P214 Relay 1 ON/OFF | depends on application | Set required Alarm Setpoints. |
| P223 / P224 <br> Relay 2 ON/OFF | depends on application | Set required Alarm Setpoints. |
| P233 / P234 Relay 3 ON/OFF | depends on application | Set required Alarm Setpoints. |
| P243 / P244 Relay 4 ON/OFF | depends on application | Set required Alarm Setpoints. |
| P253 / P254 <br> Relay 5 <br> ON/OFF | depends on application | Set required Alarm Setpoints. |
| P263 / P264 <br> Relay 6 <br> ON/OFF | depends on application | Set required Alarm Setpoints. |
| P708 Flow <br> Decimal | 2 | Set the number of decimal points required in the flow rate display |
| P709 Flow <br> Cut Off | 5.00\% | Enter as a percentage of maximum flow, the minimum flow rate to be added to the totaliser. |
| P830 <br> mA Out <br> Range | $\begin{aligned} & 2=4 \text { to } 20 \\ & \mathrm{~mA} \end{aligned}$ | What the mA output uses for the range. $0=\mathrm{Off}, 1=0$ to $20 \mathrm{~mA}, 2=4$ to 20 mA , $3=20$ to $0 \mathrm{~mA}, 4=20$ to 4 mA . |
| P870 <br> Fill Damping | $10 \mathrm{~m} / \mathrm{min}$ | Rate of maximum fill rate (set above the actual fill rate of the vessel). |
| P871 <br> Empty <br> Damping | $10 \mathrm{~m} / \mathrm{min}$ | Rate of maximum empty rate (set above the actual empty rate of the vessel). |

The default values used for determining the relay setpoints, when setting Alarm relays, via the Quick Setup menu are entered as a \% of span and are as follows.

| Relay Function | Alarm ID | On <br> Setpoint |  |
| :--- | :--- | :---: | :---: |
| Alarm | Hi Hi | $90 \%$ | Off <br> Setpoint |
| Alarm | High | $85 \%$ | $80 \%$ |
| Alarm | Low | $10 \%$ | $15 \%$ |
| Alarm | Lo Lo | $5 \%$ | $10 \%$ |

## Note

When using the Quick Setup Menu relays will be allocated to the point of measurement you are currently setting up and the availability of relays will depend on the number of relays used when setting up the previous point of measurement via the Quick Setup Menu for that point.

## Exponential Devices

If the primary measuring device is a simple exponential device, then an exponent value is required. The Ultra Twin will automatically enter the exponent value for the device chosen as detailed in the table below.


## Point of Measurement

The transducer must be above the maximum head P704 by at least the near blanking distance P107.

For Suppressed Rectangular, Trapezoidal and V-notch, weirs, the head is measured upstream at a minimum distance of $\mathbf{3}$ times maximum head from the weir plate to ensure the surface of the liquid is not affected by turbulence or drawdown. (See DRWG. 1)


DRWG. 1.
In the case of a Venturi flume the point of measurement should be $\mathbf{1 5 0} \mathbf{~ m m}$ upstream from the beginning of the converging section and for a Parshall flume $2 / 3$ the length of the converging section upstream of the throat section. See DRWG 2 and 3)


VENTURI FLUME
DRWG. 2.


PARSHALL FLUME
DRWG. 3.

For a Leopold Lagco flume the head is measured at a point upstream of the beginning of the converging section as detailed in the table below. (See DRWG 4)

| Flume Size |  | Point of Measurement |  |
| :---: | :---: | :---: | :---: |
| mm | inches | mm | inches |
| $100-305$ | $4-12$ | 25 | 1.0 |
| 380 | 15 | 32 | 1.3 |
| 455 | 18 | 38 | 1.5 |
| 530 | 21 | 44 | 1.8 |
| 610 | 24 | 51 | 2.1 |
| 760 | 30 | 64 | 2.5 |
| 915 | 36 | 76 | 3.0 |
| 1065 | 42 | 89 | 3.5 |
| 1220 | 48 | 102 | 4.0 |
| 1370 | 54 | 114 | 4.5 |
| 1520 | 60 | 127 | 5.0 |
| 1675 | 66 | 140 | 5.5 |
| 1830 | 72 | 152 | 6.0 |

 MINIMUM BLANKING DISTANCE (P107) ABOVE MAX. HEAD

When any Other device is chosen please consult the manufacturer of the device for details of where the point of measurement should be located but ensure that it is chosen such that the surface of the liquid is not affected by turbulence or drawdown.

## Calculations

## Absolute

If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula(s) as follows:

| Exponent Type | Formula | Exponent | K Factor |
| :---: | :---: | :---: | :---: |
| Suppressed <br> Rectangular Weir <br> (Without End Contractions) | $\mathrm{Q}=\mathrm{KLh}^{x}$ <br> Where: <br> $\mathrm{Q}=$ Flow <br> $\mathrm{K}=\mathrm{K}$ factor <br> L=crest length of weir <br> h=head <br> ${ }^{\mathrm{x}}=$ exponent | 1.50 <br> Automatically selected by the Ultra Twin | Automatically calculated, dependent on measurement, flow and time units chosen. |
| Cipolletti <br> (Trapezoidal) <br> Weir | $\mathrm{Q}=\mathrm{KLh}^{x}$ <br> Where: <br> $\mathrm{Q}=$ Flow <br> $\mathrm{K}=\mathrm{K}$ factor <br> L=crest length of weir <br> h=head <br> ${ }^{x}=$ exponent | 1.50 <br> Automatically selected by the Ultra Twin | Automatically calculated, dependent on measurement, flow and time units chosen. |
| Venturi Flume | $\mathrm{Q}=\mathrm{Kh}^{\mathrm{x}}$ <br> Where: <br> $\mathrm{Q}=$ Flow <br> $\mathrm{K}=\mathrm{K}$ factor <br> h=head <br> $\mathrm{x}=$ exponent | 1.50 <br> Automatically selected by the Ultra Twin | Enter value of K Factor (P718) as required |
| Parshall Flume | $\mathrm{Q}=\mathrm{Kh}^{\mathrm{x}}$ <br> Where: <br> $\mathrm{Q}=$ Flow <br> $\mathrm{K}=\mathrm{K}$ factor <br> h=head <br> ${ }^{x}=$ exponent | Automatically calculated dependent on throat size (P719) | Automatically calculated, dependent on throat size and measurement, flow and time units chosen. |
| Leopold Lagco <br> Flume | $\mathrm{Q}=\mathrm{KD}^{0.0953} \mathrm{~h}^{x}$ <br> Where: <br> $\mathrm{Q}=$ Flow <br> $\mathrm{K}=\mathrm{K}$ factor <br> $\mathrm{D}=$ pipe diameter <br> h=head <br> $\mathrm{x}=$ exponent | 1.55 <br> Automatically selected by the Ultra Twin | Automatically calculated, dependent on measurement, flow and time units chosen. |


| Exponent Type | Formula | Exponent | K Factor |
| :---: | :---: | :---: | :---: |
| V-Notch Weir | $\mathrm{Q}=\mathrm{Kh}^{\mathrm{x}}$ <br> Where: <br> $\mathrm{Q}=$ Flow <br> $\mathrm{K}=\mathrm{K}$ factor <br> h=head <br> ${ }^{x}=$ exponent | 2.50 <br> Automatically selected by the Ultra Twin | Automatically calculated, dependent on measurement, flow and time units chosen. |
| Other | $\mathrm{Q}=\mathrm{Kh}^{\mathrm{x}}$ | Enter value as required | Enter value of K Factor (P718) as required |
| Contracted <br> Rectangular <br> Weir (With End Contractions) | $\mathrm{Q}=\mathrm{K}(\mathrm{~L}-0.2 * \mathrm{~h}) \mathrm{h}^{\mathrm{x}}$ <br> Where: <br> $\mathrm{Q}=$ Flow <br> $\mathrm{K}=\mathrm{K}$ factor <br> L=crest length of weir <br> h=head <br> ${ }^{x}=$ exponent | 1.50 <br> Automatically selected by the Ultra Twin | Automatically calculated, dependent on measurement, flow and time units chosen. |

## Ratiometric

If the flow calculation is to be ratiometric $\mathbf{P 7 0 2}=\mathbf{2}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{q}_{\text {cal }}\left(\mathrm{h} / \mathrm{h}_{\text {cal }}\right)^{\mathrm{x}}$

$$
\text { Where: } \begin{array}{ll}
\mathrm{q} & =\text { flowrate } \\
\mathbf{q} \text { cal } & =\text { flowrate at maximum head (705) } \\
\mathrm{h} & =\text { head } \\
\mathbf{h}_{\text {cal }} & =\text { maximum head }(\mathbf{P 7 0 4}) \\
\mathbf{x} & =\operatorname{exponent}(\mathbf{P 7 1 7 )}
\end{array}
$$

## Example 1 'V' Notch Weir



The application is to be assigned to Point (transducer) 1.
In this example, it is required to calculate the flow through a Simple Exponential Device, which on this occasion is a V-Notch Weir. The K factor for the weir is unknown so ratiometric calculation will be used, there is no requirement for alarms and the flow rate is to be displayed in litres/second. The totaliser is to record the flow in cubic metres but is not to be displayed during RUN.

The distance from the face of the transducer to zero flow $(\mathbf{P 1 - 1 0 5})$ is 1 metre and max head ( $\mathbf{P 1 - 7 0 4}$ ) is 0.4 metres, maximum flow( $\mathbf{P 1 - 7 0 5 )}$ ) is known to be 96.5 litres/second.

To program the Ultra Twin for Example 1 V-Notch Weir by using the Quick Setup menu proceed as follows.

## If required access the Program Mode

Key in the passcode 1997 and press ENTER
At the Quick Setup menu press ENTER and as prompted, by the questions, select the relevant option and ENTER.

| Question | Option |
| :--- | :--- |
| Application | $3=$ Flow |
| PMD Type | $1=$ Exponent |
| Exponent | $6=$ V notch. |
| Calculation | $2=$ Ratiometric. |
| No. of Alarms | $0=$ No Alarms |
| Xducer (P1-101) | $1=$ dB Mach3 |
| Volume Units (P1-706) | $1=$ Litres |
| Time Units (P1-707) | $1=$ Per Second |
| Measnt. Units (P*104) | $1=$ metres |
| Empty Level (P1-105) | 1.000 metres |
| Minimum Head (P1-703) | 0.000 metres |
| Maximum Head (P1-704) | 0.400 metres |
| Total Alloc. (P1-824) | $1=$ Point 1 |
| Aux. Mode (P1-815) | $2=$ Level |
| Aux. Source (P1-816) | $0=$ Off |
| Total Multiplier (P1-823) | $7=1000$ |
| Maximum Flow (P1-705) | 96.5 |

Programming is now complete and the unit can now be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to Run Mode.

## BS3680 Flumes

## Point of Measurement

The transducer must be above the maximum head P704 by at least the near blanking distance P107.

For a Rectangular and U-throated flume, the head is measured at $\mathbf{3}$ to $\mathbf{4}$ times the maximum head upstream from the beginning of the converging section, to ensure the surface of the liquid is not effected by turbulence. (See DRWG 6)


## Calculations

Rectangular Flume

## Absolute

If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula: $\mathrm{q}=(2 / 3)^{1.5} \mathrm{gn}^{0.5} \mathrm{C}_{\mathrm{s}} \mathrm{C}_{\mathrm{v}} \mathrm{C}_{\mathrm{d}} \mathrm{bh}^{1.5}$

Where: $\mathrm{q}=$ flowrate
gn $=$ gravitational acceleration (nominal value $=980.66 \mathrm{~cm} / \mathrm{s}^{2}$ )
$\mathbf{C}_{s}=$ shape coefficient (value $=1$ )
$\mathrm{C}_{\mathbf{v}}=$ velocity coefficient calculated by Ultra Twin P721
$\mathrm{C}_{\mathrm{d}}=$ discharge coefficient calculated by Ultra Twin P722
b = throat width P711
h $=$ head

## Rationetric

If the flow calculation is to be ratiometric $\mathbf{P 7 0 2}=\mathbf{2}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{q}_{\text {cal }}\left(\mathrm{C}_{\mathrm{v}} / \mathrm{C}_{\text {vcal }}\right)\left(\mathrm{C}_{\mathrm{d}} / \mathrm{C}_{\text {dcal }}\right)\left(\mathrm{h} / \mathrm{h}_{\text {cal }}\right)^{1.5}$

```
Where: \(q\) = flowrate
    qcal = flowrate at maximum head P705
    \(\mathbf{C}_{\mathbf{v}} \quad=\) velocity coefficient calculated by Ultra Twin P721
    \(\mathrm{C}_{\mathrm{vcal}}=\) velocity coefficient at maximum head
    \(\mathbf{C}_{\mathbf{d}} \quad=\) discharge coefficient calculated by Ultra Twin P722
    \(\mathrm{C}_{\text {dcal }}=\) discharge coefficient at maximum head
    h = head
    \(\mathbf{h}_{\text {cal }}=\) maximum head P704
```


## U-Throated Flume

## Absolute

If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula: $\mathrm{q}=(2 / 3)^{1.5} \mathrm{~g}_{\mathrm{n}}{ }^{0.5} \mathrm{C}_{\mathrm{u}} \mathrm{C}_{\mathrm{v}} \mathrm{C}_{\mathrm{d}} \mathrm{bh} h^{1.5}$

```
Where: \(q\) = flowrate
    \(\mathrm{g}_{\mathrm{n}}=\) gravitational acceleration (nominal value \(=980.66 \mathrm{~cm} / \mathrm{s}^{2}\) )
    h = head
    \(\mathrm{C}_{\mathrm{u}}=\) shape coefficient calculated by Ultra Twin P724
    \(\mathrm{C}_{\mathrm{v}}=\) velocity coefficient calculated by Ultra Twin P721
    \(\mathrm{C}_{\mathrm{d}}=\) discharge coefficient calculated by Ultra twin P722
    b = throat width P711
```


## Ratiometric

## U-Throated Flume

If the flow calculation is to be ratiometric $\mathbf{P 7 0 2}=\mathbf{2}$ the flow will be calculated using the formula:

$$
\mathrm{q}=\mathrm{q}_{\text {cal }}\left(\mathrm{C}_{\mathrm{v}} / \mathrm{C}_{\text {vcal }}\right)\left(\mathrm{C}_{\mathrm{d}} / \mathrm{C}_{\text {dcal }}\right)\left(\mathrm{C}_{\mathrm{u}} / \mathrm{C}_{\mathrm{ucal}}\right)\left(\mathrm{h} / \mathrm{h}_{\text {cal }}\right)^{1.5}
$$

Where: $\mathrm{q}=$ flowrate
$\mathbf{q}_{\text {cal }}=$ flowrate at maximum head P705
Cv = velocity coefficient calculated by Ultra Twin P721
$\mathrm{Cv}_{\text {cal }}=$ velocity coefficient at maximum head
Cd = discharge coefficient calculated by Ultra Twin P722
$\mathrm{Cd}_{\text {cal }}=$ discharge coefficient at maximum head
$\mathrm{Cu}=$ shape coefficient $\mathbf{P 7 2 4}$
$\mathrm{Cu}_{\text {cal }}=$ shape coefficient at maximum head
$\mathrm{h} \quad=$ head $\mathbf{h}_{\text {cal }}=$ maximum head P704

## Example 2 BS3680 U-Throated Flume

In this example, it is required to calculate to BS3680 the flow through a U Throated Flume without any hump. Absolute calculation will be used, and there is a requirement for an alarm to indicate a low flow condition which will be set to relay 1 . The flow rate is to be displayed in cubic meters/hour and the totaliser is also to record the flow in cubic metres, the resettable totaliser is to be displayed during RUN.

The application is to be assigned to Point (transducer) 2.
The distance from the face of the transducer to zero flow $(\mathbf{P 2 - 1 0 5})$ is 1 metre and max head ( $\mathbf{P} 2-704$ ) is 0.4 metres, maximum flow ( $\mathbf{P} 2-705$ ) will be calculated by the Ultra Twin as $725.171 \mathrm{~m}^{3} / \mathrm{hr}$.

The dimensions of the flume are as follows:
Approach Channel diameter (Dim "A") P2-710 $=0.7 \mathrm{~m}$
Throat diameter (Dim "B") P2-711 $=0.5 \mathrm{~m}$
Throat length (Dim "C") P2-712 $\quad=1.0 \mathrm{~m}$

To program the Ultra Twin for Example 2 BS3680 U-Throated Flume by using the Quick Setup menu proceed as follows.

## If required access the Program Mode

Key in the passcode 1997 and press ENTER
At the Quick Setup menu press the $\square$ hot key and toggle to Point 2 display and press ENTER and then as prompted, by the questions, select the relevant option and ENTER.

| Question | Option |
| :--- | :--- |
| Application | $2=$ Flow |
| PMD Type | $3=3680$ Flume |
| 3680 Flumes | $1=$ Absoluate |
| Calculation | $1=1$ Alarm |
| No. of Alarms | $2=$ Low |
| Type Alarm 1 | $1=$ Set Relay 1 |
| Alarm No 1 | $1=$ dB Mach3 |
| Xducer (P2-101) | $2=$ Cubic. M |
| Volume Units (P2-706) | $3=$ Per Hour |
| Time Units (P2-707) | $1=$ metres |
| Measnt. Units (P*104) | 1.000 metres |
| Empty Level (P2-105) | 0.000 metres |
| Minimum Head (P2-703) | 0.400 metres |
| Maximum Head (P2-704) | $1=$ Point 1 |
| Total Alloc. (P2-824) | $7=$ Totaliser (R) |
| Aux. Mode (P2-815) | $1=$ Point 1 |
| Aux. Source (P2-816) | Total Multiplier (P2-823) |
| Approach. Dia.(P2-710) | $7=1000$ |
| Throat Dia. (P2-711) | 0.7 metres |
| Throat Len. (P2-712) | 0.5 metres |

Programming is now complete and the unit can now be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to Run Mode.

## Note

If relay setpoints do not meet the exact requirements of the application, they can be modified to suit by pressing ENTER when, "For More Options Hit Enter", is displayed, and entering new values to relay setpoints as required. Alternatively, the relevant relay setpoint can be accessed either by the main menu system or directly via parameter number and changed as necessary.

## BS3680 Thin Plate Weirs

## Point of Measurement

The transducer must be above the maximum head P704 by at least the near blanking distance P107.

For Rectangular and $\mathbf{V}$-notch weirs, the head is measured at a point 4 to 5 times the maximum head upstream from the weir plate, to ensure the surface of the liquid is not affected by turbulence or drawdown. DRWG 8)


## Calculations

BS 3680 Rectangular Weir

## Absolute

If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula: $q=C_{e} 2 / 3(2 g n)^{0.5} b_{e} h_{e}{ }^{1.5}$

Where: $q$ = flowrate
Ce $=$ discharge coefficient calculated by Ultra Twin P723
$\mathrm{gn}=$ gravitational acceleration (nominal value $=980.66 \mathrm{~cm} / \mathrm{s}^{2}$ )
be =effective approach width where $\mathbf{b}$ is approach width
(Dim "A") P710
he $=$ effective head

## RATIOMETRIC

If the flow calculation is to be ratiometric $\mathbf{P 7 0 2}=\mathbf{2}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{q}_{\mathrm{cal}} \mathrm{C}_{\mathrm{e}} / \mathrm{C}_{\text {ecal }}\left(\mathrm{h}_{\mathrm{e}} / \mathrm{h}_{\text {ecal }}\right)^{1.5}$

```
Where: q = flowrate
    q cal = flowrate at maximum head P705
    Ce = discharge coefficient calculated by Ultra Twin P723
    Ce
    he = effective head
    he cal = effective head at maximum head
```


## BS 3680 V-Notch Weir

## Absolute

If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula: $q=C_{8} 8 / 15 \tan ($ theta $/ 2)(2 \mathrm{gn})^{0.5} \mathrm{~h}^{2.5}$

```
Where: \(q\) = flowrate
    Ce = discharge coefficient calculated by Ultra Twin P723
    theta \(=\mathrm{v}\)-notch angle
    gn \(=\) gravitational acceleration (nominal value \(=980.66 \mathrm{~cm} / \mathrm{s}^{2}\) )
    h = head
```

Ultra Twin presets the angle (theta) on selection of the chosen device this angle is $\mathbf{9 0}$ degrees for a BS 3680 full 90 degree $\mathbf{V}$ notch weir, $\mathbf{5 3}$ degrees $\mathbf{8}$ minutes in the case of the BS3680 half 90 degree $\mathbf{V}$ notch weir and 28 degree 4 minutes in the case of the BS3680 quarter 90 degree $V$ notch weir.

## RATIOMETRIC

If the flow calculation is to be ratiometric $\mathbf{P 7 0 2}=\mathbf{2}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{q}_{\mathrm{cal}} \mathrm{C}_{\mathrm{e}}(\mathrm{h}) / \mathrm{C}_{\mathrm{e}}\left(\mathrm{h}_{\text {cal }}\right)\left(\mathrm{h} / \mathrm{h}_{\text {cal }}\right)^{2.5}$

```
Where: q = flowrate
    q cal = flowrate at maximum head P705
    \(\mathrm{Ce}(\mathrm{h})=\) discharge coefficient for head
    \(\mathrm{Ce}\left(\mathrm{h}_{\text {cal }}\right)=\) discharge coefficient for maximum head
    h = head
    \(\mathrm{h}_{\text {cal }}=\) maximum head P704
```


## Example 3 BS3680 Rectangular Weir



In this example, it is required to calculate to the flow through a BS3680 Rectangular weir. Absolute calculation will be used, and there is a requirement for an alarm to indicate a high flow condition to be set to Relay 3. The flow rate is required to be displayed in litres/second and the totaliser is to record the flow in cubic metres, the resettable totaliser is to be displayed during RUN.

The application is to be assigned to Point (transducer) 1.
The distance from the face of the transducer to zero flow ( $\mathbf{P 1} 1 \mathbf{1 0 5}$ ) is 1 metre and max head ( $\mathbf{P 1} 1-704$ ) is 0.4 metres, maximum flow ( $\mathbf{P 1} 1-705$ ) will be calculated by the Ultra Twin as $262.721 \mathrm{ltrs} / \mathrm{sec}$.

Approach width ( $\operatorname{Dim}$ "A") P1-710 $=0.5 \mathrm{~m}$
Crest width ( Dim "B") P1-711 $^{2}=0.3 \mathrm{~m}$
Crest Height (Dim "C") P1-712 $=0.3 \mathrm{~m}$

To program the Ultra Twin for Example 3 BS3680 Weir by using the Quick Setup menu proceed as follows.

## If required access the Program Mode

Key in the passcode 1997 and press ENTER
At the Quick Setup menu press ENTER and as prompted, by the questions, select the relevant option and ENTER.

| Question | Option |
| :--- | :--- |
| Application | $3=3680$ Weir |
| PMD Type | $1=$ Rectangular |
| 3680 Flumes | $1=$ Absolute |
| Calculation | $1=1$ Alarm |
| No. of Alarms | $1=$ High |
| Type Alarm 1 | $3=$ Set Relay 3 |
| Alarm No 1 | $1=$ dB Mach3 |
| Xducer | $1=$ Litres |
| Volume Units | $1=$ Per Second |
| Time Units | $1=$ metres |
| Measnt. Units | 1.000 metres |
| Empty Level | 0.000 metres |
| Minimum Head | 0.400 metres |
| Maximum Head | $1=$ Point 1 |
| Total Alloc. | $7=$ Totaliser |
| Aux. Mode | $1=$ Point 1 |
| Aux Source | $7=1000$ |
| Total Multiplier | 0.5 metres |
| App. Width (Dim A) | 0.3 metres |
| Crest Width (Dim B) | 0.3 metres |
| Crest Height (Dim C) | 0.3 |

Programming is now complete and the unit can now be returned to the run mode, press CANCEL until Run Mode? Is displayed on the LCD press ENTER, and the Ultra Twin will return to Run Mode.

## Note

If relay setpoints do not meet the exact requirements of the application, they can be modified to suit by pressing ENTER when, "For More Options Hit Enter", is displayed, and entering new values to relay setpoints as required. Alternatively, the relevant relay setpoint can be accessed either by the main menu system or directly via parameter number and changed as necessary.

## BS3680 Rectangular Broad Crested Weir

## Point of Measurement

The transducer must be above the maximum head P704 by at least the near blanking distance P107.

The head is measured at a point 3 to 4 times the maximum head upstream from the weir crest, to ensure the surface of the liquid is not affected by turbulence or drawdown.


## Calculations

Absolute
If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula: $\mathrm{q}=(2 / 3)^{1.5} \mathrm{C}_{\mathrm{e}} \mathrm{b}\left(\mathrm{gh}^{3}\right)^{0.5}$

Where: $q$ = flowrate
Ce $=$ discharge coefficient calculated by Ultra Twin P723
b = approach width P710
$\mathrm{g}=$ gravitational acceleration (nominal value $=980.66 \mathrm{~cm} / \mathrm{s}^{2}$ )
$\mathrm{h}=$ head

## Ratiometric

If the flow calculation is to be ratiometric $\mathbf{P 7 0 2}=\mathbf{2}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{q}_{\mathrm{cal}} \mathrm{C}_{\mathrm{e}} / \mathrm{C}_{\text {ecal }}\left(\mathrm{h}_{\mathrm{e}} / \mathrm{h}_{\text {ecal }}\right)^{1.5}$

$$
\text { Where: } \begin{array}{ll}
\mathrm{q} & =\text { flowrate } \\
\mathbf{q} \text { cal } & =\text { flowrate at maximum head P705 } \\
\text { Ce } & =\text { discharge coefficient calculated by Ultra twin P723 } \\
& \text { Ce ceal }=\text { discharge coefficient at maximum head } \\
\text { he } & =\text { effective head } \\
\text { he cal }_{\text {cal }} & =\text { effective head at maximum head } \\
\end{array}
$$

## Special Devices

## Point of Measurement

The transducer must be above the maximum head P704 by at least the near blanking distance P107.

In the case of a Palmer Bowlus flume the point of head measurement should be half the value of Dim "A" P710 upstream of the device.

For a $\mathbf{H}$-Flume the head measurement is taken at a point downstream from the flume entrance as detailed in the table below:


| Flume size <br> Dim. "A" P710 <br> cm |  | Point of Measurement |  |
| :---: | :---: | :---: | :---: |
| 15.25 | 0.5 | cm |  |
| 23.00 | 0.75 | 6.7 | 1.88 |
| 30.05 | 1.0 | 9.1 | 2.69 |
| 45.70 | 1.5 | 13.5 | 3.63 |
| 61.00 | 2.0 | 17.9 | 7.38 |
| 76.20 | 2.5 | 22.5 | 9.00 |
| 91.45 | 3.0 | 27.2 | 10.88 |
| 137.15 | 4.5 | 40.5 | 16.19 |

V-notch angle weirs, the head is measured upstream of the weir plate at a minimum distance of $\mathbf{3}$ times maximum head to ensure the surface of the liquid is not affected by turbulence or drawdown. See Exponential devices, above, for further details.

## Calculations

## Palmer Bowlus Flume and H-Flume

## Absolute

If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula: $q=f(h)$

```
Where: \(\mathrm{q}=\) flowrate
    \(\mathrm{f}=\) is an \(8^{\text {th }}\) degree polynomial solution for h (head)
```


## Ratiometric

If the flow calculation is to be ratiometric $\mathbf{P 7 0 2}=\mathbf{2}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{q}_{\text {cal }} \mathrm{f}(\mathrm{h}) / \mathrm{f}\left(\mathrm{h}_{\text {cal }}\right)$

$$
\begin{array}{lll}
\text { Where: } & \mathrm{q} & =\text { flowrate } \\
& \mathbf{q}_{\text {cal }} & =\text { flowrate at maximum head P705 } \\
\mathrm{f}(\mathrm{~h}) & =\text { a polynomial solution for } \mathrm{h}(\mathrm{head}) \\
\mathrm{f}\left(\mathrm{~h}_{\text {cal }}\right) & =\text { a polynomial solution for } \mathrm{h}_{\text {cal }}(\text { maximum head })
\end{array}
$$

V-Notch Angle Weir (Non-BS 3680)

## Absolute

If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{C}_{\mathrm{e}} 8 / 15 \tan ($ theta/2 $)(2 \mathrm{gn})^{0.5}(\mathrm{~h}=\mathrm{kh})^{2.5}$

```
Where: \(\mathrm{q}=\) flowrate
    \(C_{e}=\) discharge coefficient calculated by Ultra Twin P723
    theta \(=\mathrm{V}\)-notch angle
    gn \(=\) gravitational acceleration
    h = head
    kh = compensated head
```


## Ratiometric

If the flow calculation is to be ratiometric $\mathbf{P 7 0 2}=\mathbf{2}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{q}_{\text {cal }}\left(\mathrm{h}+\mathrm{kh} / \mathrm{h}_{\text {cal }}+\mathrm{kh}\right)^{2.5}$

$$
\text { Where: } \begin{aligned}
\mathrm{q} & =\text { flowrate } \\
\mathbf{q} \text { cal } & =\text { flowrate at maximum head P705 } \\
\mathrm{h} & =\text { head } \\
\mathrm{kh} & =\text { compensated head }
\end{aligned}
$$

## Universal Calculations

## Point of Measurement

The transducer must be above the maximum head P704 by at least the near blanking distance P107.
For all Universal calculation applications, the point at which the head is measured should be chosen such that the surface of the liquid is not affected by turbulence.

## Calculations

## Universal Head Vs Flow

## Absolute

If the flow calculation is to be absolute $\mathbf{P 7 0 2}=\mathbf{1}$ the flow will be calculated using the formula: $\mathrm{q}=\mathrm{q}(\mathrm{h})$

Where: $\mathrm{q}=$ flowrate
$\mathrm{q}(\mathrm{h})=$ flowrate for head
The desired number of Breakpoints, (P730 - P793) are to be entered in pairs in values of head and corresponding flow. (Minimum of 2 pairs of Breakpoints is required).

This page left blank intentionally

## Chapten 5 Parameter Guide and Descriptions

This section outlines all parameters available in the Ultra Twin, as they appear in the menu system.

## Menu System Diagrams

Shown below is a set of charts to show you how all the various parts can be found using the menu system.

## Top Level Menu



## Application Menu




## Pump "Advanced"









## mA Output 2 Menu



## Compensation



## Stability Menu







## Parameter Listing

This section describes, in detail, all parameters available in the Ultra Twin. Any parameter can be reset to its default, by pressing the $\boldsymbol{n}$ hot key, whilst in program mode.

## Application Parameters

## System Units

## P1 and P2

## P*104 Measurement Units

This parameter sets the units you want to use for programming and display

| Option | Description |
| :--- | :--- |
| $\mathbf{1}=\mathbf{m e t r e s}$ (Default) | All units of measure are METRES |
| $2=\mathrm{cm}$ | All units of measure are CENTIMETRES |
| $3=\mathrm{mm}$ | All units of measure are MILLIMETRES |
| $4=$ feet | All units of measure are FEET |
| $5=$ inches | All units of measure are INCHES |

## Operation

## P1 or P2

## P1-100, P2-100 Mode of Operation

This parameter sets the mode of operation, when in run mode, and can be set to one of the following:

| Option | Description |
| :--- | :--- |
| 1= Distance (Default) | Display shows the distance from the <br> transducer face to the surface. |
| 2= Level | Display shows how full the vessel is. |
| 3 = Space | Display shows how empty a vessel is. |
| $4=$ OCM Head | Display shows how high the head is. |
| $5=$ OCM Flow | Display shows the instantaneous flow. |
| $6=$ Volume | Display shows volume of material in the <br> vessel. |

This parameter should be set to the transducer being used with the unit, and can be set to one of the following:

| Option | Description |
| :---: | :---: |
| When P100 = 1 (Distance), 2 (Level), 3 (Space) or 6 (Volume) |  |
| $0=$ None | No Transducer connected. By default, the relevant display will show "Not In Use" unless allocated to the point of measurement in use. |
| $1=\mathrm{dB} 3$ | Transducer is a dB3. Range 0.125 to 3.00 metres |
| 2 = dB6 (Default) | Transducer is a dB6. Range 0.3 to 6.00 metres |
| $3=\mathrm{dB} 10$ | Transducer is a dB10. Range 0.3 to 10.00 metres |
| $4=\mathrm{dB} 15$ | Transducer is a dB15. Range 0.5 to 15.00 metres |
| $5=\mathrm{dB} 25$ | Transducer is a dB25. Range 0.6 to 25.00 metres |
| $6=\mathrm{dB} 40$ | Transducer is a dB40. Range 1.2 to 40.00 metres |
| 7 = dBS6 | Transducer is a dBS6. Range 0.2 to 6.00 metres |
| $8=$ dBMach3 | Transducer is a dBMach3 Range 0.0 to 2.425 mtrs . |
| When P100 = 4 (OCM Head) or 5 (OCM Flow) |  |
| $1 \text { = dBMach3 }$ <br> (Default) | Transducer is a dBMach3 Range 0.0 to 2.425 mtrs. |
| $2=\mathrm{dB} 6$ | Transducer is a dB6. Range 0.3 to 6.00 metres |
| $3=\mathrm{dB} 10$ | Transducer is a dB10. Range 0.3 to 10.00 metres |
| $4=\mathrm{dB} 15$ | Transducer is a dB15. Range 0.5 to 15.00 metres |
| 7 = dBS6 | Transducer is a dBS6. Range 0.2 to 6.00 metres |
| Available for all modes selected in P100 |  |
| *9 = dBR16 | Transducer is a mmWave Radar. Range 0.077 to 16 metres |
| * $10=$ dBR8 | Transducer is a mmWave Radar. Range 0.077 to 8 metres |

## Important Information

The choices of transducers available will be dependent on the Mode, (P1100, P2-100), selected and will vary from application to application.

* Please consult your local Pulsar distributor for the versions of firmware that the mmWAVE Radars are available in.


## P1-102, P2-102 Material

This parameter should be set to the type of material being monitored.

| Option | Description |
| :--- | :--- |
| $\mathbf{1}=$ Liquid (Default) | Use for liquids and flat solid materials |
| $2=$ Solid | Solid material that is heaped or at an angle |

## Dimensions

P1 or P2

## P1-105, P2-105 Empty Level

This parameter is to be set to the maximum distance from the face of the transducer to the empty point, in $\mathbf{P}^{*} \mathbf{1 0 4}$ Measurement Units. Note this value affects span as well, (see important information below), so should be set before span.

## Important Information

When using the dB Mach 3 the empty distance is measured from the end of the horn to the empty point in P104 Measurement Units.

## Important Information

When changing the Empty Distance (P1-105, P2-105) you can also recalculate the values for the Span so that it equals the empty distance (P105) minus Near Blanking (P107) and the Relay Setpoints, so that they remain at the same percentage values of the empty distance as they were before you changed the empty distance (P105). You will be asked the question "Recalculate Span?" if you choose YES (enter 1), then the span will be recalculated. Any other answer will leave the span at its original value. You will then be asked if you want to "Recalculate Setpoints?", if you choose YES (enter 1), then all Relay Setpoints will be recalculated as a percentage of the new empty distance. Any other answer will leave the setpoints at their original values.

## P1-106, P2-106 Span

This parameter should be set to the maximum distance from the Empty Level ( $\mathbf{P} 1-105, \mathbf{P} 2-105)$ to the maximum material level. It is automatically set to be equal to the Empty Level (P1-105, P2-105) less the Near Blanking distance (P1-107, P2-107), when you set the empty level.

This parameter is the distance from the face of the transducer that is not measurable and is pre-set to the minimum value dependant on the Xducer (P101) selected. It should not be set to less than this figure, but can be increased, typical to ignore close in obstructions.

| Transducer | Near Blanking Distance |
| :--- | :--- |
| P101 $=\mathrm{dBMach3}$ Transducer | Default Blanking Distance $=0.000 \mathrm{~m}$ |
| P101 $=\mathrm{dB} 3$ Transducer | Default Blanking Distance $=0.125 \mathrm{~m}$ |
| P101 $=\mathrm{dB} 6$ Transducer | Default Blanking Distance $=0.300 \mathrm{~m}$ |
| P101 $=\mathrm{dB} 10$ Transducer | Default Blanking Distance $=0.300 \mathrm{~m}$ |
| P101 $=\mathrm{dB} 15$ Transducer | Default Blanking Distance $=0.500 \mathrm{~m}$ |
| P101 $=\mathrm{dB} 25$ Transducer | Default Blanking Distance $=0.600 \mathrm{~m}$ |
| P101 $=\mathrm{dB} 40$ Transducer | Default Blanking Distance $=1.200 \mathrm{~m}$ |
| P101 $=\mathrm{dBS} 6$ Transducer | Default Blanking Distance $=0.200 \mathrm{~m}$ |
| P101 $=$ dBR16 Radar | Default Blanking Distance $=* 0.077 \mathrm{~m}$ |
| P101 $=$ dBR8 Radar | Default Blanking Distance $=* 0.077 \mathrm{~m}$ |

*The signal emanates from the curved face of the Radar, but for the purposes of measurement it is taken from the drip shield.

## P108 Far Blanking Distance

This is the distance (as a percentage of empty level P1-105, P2-105) beyond the empty point that the unit will be able to measure, and by default is preset to plus $\mathbf{2 0 \%}$ of the empty level.

If the surface being monitored can extend beyond the Empty Level 105, P2-105) then the far blanking distance can be increased to a maximum of $100 \%$ of empty level.

This parameter is always entered as a \% of empty level.

## Relay Parameters

## P1 and P2

All relay related parameters are prefixed with a $\mathbf{2}^{* *}$.
The second digit of the three-figure parameter number denotes the relay number as follows:

21* parameters for Relay 1
22* parameters for Relay 2
$23^{*}$ parameters for Relay 3
24* parameters for Relay 4
25* parameters for Relay 5
26* parameters for Relay 6

The third digit selects specific parameters for the setting of the relays, which can be selected individually and results in the following parameter numbers for each relay.

Relay 1210 to 219
Relay 2220 to 229
Relay 3230 to 239
Relay 4240 to 249
Relay 5250 to 259
Relay 6260 to 269

This parameter defines what type each relay should be, see the table below for available options, which will be dependent on the Operational Mode (P100), selected.

| Option | Description |
| :--- | :--- |
| 0= Not In Use (Default) | Relay not in use or programmed and LED will <br> always be off. |
| 1= Alarm | Relay is programmed as an alarm relay, which <br> will de-energise ON, and energise OFF. <br> This will ensure an alarm is raised if the <br> power fails to the unit. |
| $2=$ Pump | Relay is programmed as a pump relay, which <br> will energise ON, and de-energise OFF. |
| $3=$ Control | Relay is programmed as a control relay, <br> which will energise ON, and de-energise <br> OFF. |
| $4=$ Miscellaneous | Relay is programmed as a miscellaneous <br> relay, which will energise ON, and de- <br> energise OFF. |

## Alarms

P1 and P2
When $\mathbf{P} * 210,220,230,240,250,260=1$ (Alarm)
The second parameter for each relay determines the function of the alarm.

## P*211, P*221, P*231, P*241, P*251, P*261 - Relay Function

This parameter defines what function the alarm will respond to as follows.

| Option | Description |
| :--- | :--- |
| 0= Off (Default) | Relay will not operate. |
| $1=$ Level | Alarm is based on the level in the vessel, and the |
|  | type of level alarm $(\mathrm{P} * 212,222,232,242,252$, |
|  | $262)$ and two setpoints must be set $(\mathrm{P} * 213,223$, |
|  | 233, 243, 253, 263 \& $\mathrm{P} * 214,224,234,244,254$, <br> $264)$. Setpoints are entered in Display Units or \% <br> of span as referenced to Empty Level. |


| Option | Description |
| :---: | :---: |
| $2=$ Rate of Change | Alarm is based on the rate of change of level in the vessel, and the type of rate of change alarm $(\mathrm{P} * 212,222,232,242,252,262)$ and two setpoints must be set ( $\mathrm{P} * 213,223,233,243,253$, $263 \& P * 214,224,234,244,254,264)$. Setpoints are entered in Display Units per minute or \% of span per minute and a negative value should be entered for a Rate Alarm on a de-creasing level, and a positive value for an increasing level. |
| 3= Temperature | Alarm is based on the temperature, and the type of temperature alarm $(\mathrm{P} * 212,222,232,242,252$, 262) and two setpoints must be set ( $\mathrm{P} * 213,223$, $233,243,253,263 \& P * 214,224,234,244$, 254,264). The temperature used depends on the temperature source selected (P1-852/P2-852). Setpoints are entered in ${ }^{\circ} \mathrm{C}$. |
| 4= Loss of Echo | Alarm is raised if the Failsafe Timer (P1-809/P2-809) expires. No setpoints are required. |
| 5= Loss of Clock | Alarm is raised if the real-time clock fails. No setpoints are required. |
| 6 = Device Fail | Alarm is raised if a device, connected to the relay assigned in alarm ID ( $\mathrm{P} * 212,222,232,242,252$, 262), fails. E.g. pump is put out of service. No setpoints are required. |
| 7 = Device Alarm | Alarm is raised if a fail signal is detected on the digital input as assigned in alarm ID ( $\mathrm{P} * 212,222$, 232, 242, 252, 262) No setpoints are required. |

Note that the loss of echo and loss of clock will also be shown on the display as "LOST ECHO" and "LOST CLOCK" respectively.

The third parameter for each relay determines the alarm ID for the relay you wish to set.

## $P^{\star} 212, P^{\star} 222, P^{\star} 232, P^{\star} 242, P^{\star} 252$, $P^{*} 262$ Relay Alarm ID

## When $\mathbf{P} * \mathbf{2 1 1}, \mathbf{2 2 1}, \mathbf{2 3 1}, \mathbf{2 4 1}, \mathbf{2 5 1}, 261=1$ (Level), 2 (Rate of Change) or 3 (Temperature)

This parameter defines which alarm type, or identification, the relay should respond to, as follows.

| Alarm ID | Description | Setpoints |
| :---: | :---: | :---: |
| 1=General (Default) | Relay goes "ON" when the value reaches the ON setpoint and goes "OFF" when the value reaches the OFF setpoint. | P*213, 223, 233, $243,253,263$ is ON Setpoint: P*214, 224, 234, $244,254,264$ is OFF Setpoint |
| 2= High | Relay goes "ON" when the value rises to the ON setpoint and goes "OFF" when the value lowers to the OFF setpoint. | ON> OFF <br> Relay Setpoints P*213, 223, 233, 243, 253, 263 and P*214, 224, 234, 244, 254, 264 <br> Setpoints, can be set in any order as the unit 'knows' that you are setting a high-level alarm. |
| $3=\mathrm{Hi}-\mathrm{Hi}$ | Same as $2=$ High, but different identifier. |  |
| 4= Low | Relay goes "ON" when the value lowers to the ON setpoint and goes "OFF" when the value rises to the OFF setpoint. | ON<OFF Relay <br> Setpoints <br> P*213, 223, 233, <br> 243, 253, 263 and <br> P*214, 224, 234, <br> 244, 254, 264. <br> Setpoints, can be set in any order as the unit 'knows' that you are setting a low-level alarm. |
| $5=\mathrm{LoLo}$ | Same as 4=Lo, but different identifier. |  |


| Alarm ID | Description | Setpoints |
| :--- | :--- | :--- |
| 6= In bounds | Relay goes "ON" if | Relay Setpoints, |
|  | value is inside the zone | $\mathrm{P} * 213,223,233$, |
|  | between the two | $243,253,263$ and |
|  | setpoints. | $\mathrm{P} * 214,224,234$, |
|  |  | $244,254,264$ can |
|  |  | be set in any order |
| as the unit 'knows' |  |  |
|  |  | that you are setting |
|  |  | an inbounds alarm. |
| $7=$ Out of bounds | Relay goes "ON" if | Relay Setpoints |
|  | value is outside the zone | $\mathrm{P} * 213,223,233$, |
|  | between the two | $243,253,263$ and |
|  | setpoints. | $\mathrm{P} * 214,224,234$, |
|  |  | $244,254,264$ can |
|  |  | be set in any order |
|  |  | as the unit 'knows' |
|  | that you are setting |  |
|  |  | an out of bounds |
|  |  | alarm. |

When $P * 211,221,231,241,251,261=4($ Loss of Echo) or 5 (Loss of Clock)

The third parameter has no function and will not be displayed.

This parameter defines which failed device relay, the alarm should respond to, as follows.

| Alarm ID | Description | Setpoints |
| :--- | :--- | :--- |
| 1 = Fail Rel. 1 | Relay goes "ON" when a device <br> failure is detected on relay 1. | None |
| 2 = Fail Rel.2 | Relay goes "ON" when a device <br> failure is detected on relay 2. | None |
| 3 = Fail Rel.3 | Relay goes "ON" when a device <br> failure is detected on relay 3. | None |
| 4 = Fail Rel.4 | Relay goes "ON" when a device <br> failure is detected on relay 4. | None |
| 5 = Fail Rel.5 | Relay goes "ON" when a device <br> failure is detected on relay 5. | None |
| $6=$ Fail Rel.6 | Relay goes "ON" when a device <br> failure is detected on relay 6. | None |
| $7=$ Any 1 Fail | Relay goes "ON" when a device <br> failure is detected on any 1 <br> relay. | None |
| $8=$ Any 2 Fail | Relay goes "ON" when 2 device <br> failures are detected on any 2 <br> relays. | None |

This parameter defines which digital input, the alarm should respond to, as follows.

| Alarm ID | Description | Setpoints |
| :--- | :--- | :--- |
| 1 = Fail Inp.1 | Relay goes "ON" when a <br> fail signal is detected on <br> digital input 1. | None |
| 2 = Fail Inp.2 | Relay goes "ON" when a <br> fail signal is detected on <br> digital input 2. | None |
| 3 = Fail Inp.3 | Relay goes "ON" when a <br> fail signal is detected on <br> digital input 3. | None |
| 4 = Fail Inp.4 | Relay goes "ON" when a <br> fail signal is detected on <br> digital input 4. | None |
| 5 = Fail Inp.5 <br> (Wall mount Only) | Relay goes "ON" when a <br> fail signal is detected on <br> digital input 5. | None |
| 6 = Fail Inp.6 <br> (Wall mount Only) | Relay goes "ON" when a <br> fail signal is detected on <br> digital input 6. | None |
| 7 = Fail Inp.7 <br> (Wall mount Only) | Relay goes "ON" when a <br> fail signal is detected on <br> digital input 7. | None |

The fourth parameter and the fifth parameter for each relay set the Alarm "ON" and "OFF" points. For a high alarm the "ON" is set higher than "OFF". For low alarm the "ON" is set lower than "OFF". See the appropriate alarm ID, table ( $\mathbf{P} * \mathbf{2 1 2}, \mathbf{2 2 2}, \mathbf{2 3 2}, \mathbf{2 4 2}, \mathbf{2 5 2}, 262$ ) for further information.

When P*211, 221, 231, 241, 251, 261 = 1 (Level), 2 (Rate of Change) or 3 (Temp.)

## P*213, P*223, P*233 P*243, P*253, P*263 - Relay Setpoint 1

Determines the "ON" or "OFF" point for the alarm according to the ID selected.

## P*214, P*224, P*234, P*244, P*254, P*264 - Relay Setpoint 2

Determines the "ON" or "OFF" point for the alarm according to the ID selected.

## Important Information

Setpoints are entered in values according to the function selected.
Level - entered in Display Units or \% of span as referenced to Empty Level.
Rate of Change - entered in Display Units per minute or \% of span per minute. For an alarm on an increasing level enter setpoints as a positive value, for an alarm on a decreasing level enter setpoints as a negative value.
Temperature - entered in ${ }^{\circ} \mathrm{C}$.
Efficiency - entered in \% value of efficiency.
See the appropriate alarm function, table ( $\mathbf{P} 211, \mathbf{2 2 1}, \mathbf{2 3 1}, \mathbf{2 4 1}, \mathbf{2 5 1}$, 261) for further information.

- To set level setpoints in \% press the hot key to show and enter $\%$ figure relative to empty level.

When $\mathrm{P} * 211,221,231,241,251,261=4$ (Loss of Echo), 5 (Loss of Clock), 6 (Device Fail) or 7 (Device Alarm)

The fourth and fifth parameters have no function and will not be displayed.

The next parameter will determine which point(s) of measurement that the alarm relay is to be allocated to.

This parameter determines which point(s) of measurement the relay will react to.

| Option | Description |
| :--- | :--- |
| 1= Point 1 (Default) | Relay acts on Point 1 calculated levels. |
| 2= Point 2 | Relay acts on Point 2 calculated levels. |
| 3 = Avg. 1 \& 2 | Relay acts on calculated average level of 1 \& 2. |
| 4= Sum 1 + 2 | Relay acts on calculated sum level of 1 \& 2. |
| 5= Diff. 1-2 | Relay acts on calculated differential level of 1-2 |

When $\mathbf{P} * 211,221,231,241,251,261=2$ (Rate of Change), 3 (Temperature) or 4 (Loss of Echo)

| Option | Description |
| :--- | :--- |
| 1= Point 1 (Default) | Relay acts on Point 1calculated values. |
| $2=$ Point 2 | Relay acts on Point 2 calculated values. |

When $P^{*}$ 211, 221, 231, 241, 251, $261=5$ (Loss of Clock), 6 (Device Fail) or 7 (Device Alarm)

This parameter has no function and will not be displayed.

## Pumps

## P1 and P2

This option is not available when $\operatorname{Mode}(\mathbf{P 1 0 0})$ is set to $\mathbf{6}=$ Volume.
When P *210, 220, 230, 240, 250, $260=2$ (Pump)
When a relay is being used for a pump function, the second parameter determines the pump duty that will be used to determine the operating cycle.

## P*211, P*221, P*231, P*241, P*251, P*261 - Relay Function,

This parameter defines which pump duty the relay should respond to as follows.

| Pump Duty | Description |
| :--- | :--- |
| 0= Off (Default) | Relay is always de-energised. |
| 1= Fixed duty assist | All pumps are used to assist each other <br> (run at the same time) and each pump <br> has its own setpoints. (P*213, 223, 233, <br> $243,253,263 ~ \& ~$$* 214,224,234,244$, |
|  | 254, 264). |


| Pump Duty | Description |
| :---: | :---: |
| 4= Alternate duty backup | If a pump fails to meet the demand (due to malfunction, intake blockage etc.), then it is stopped and another pump shall take over. Each pump has its own setpoints, ( $\mathrm{P} * 213,223,233,243,253$, 263 \& $\mathrm{P} * 214,224,234,244,254,264)$ but each time all pumps have stopped, then the setpoints are sequentially rotated between the pumps to ensure equal pump use. |
| 5= Duty backup and assist | First pump comes on, if it cannot cope, it goes off and next pump comes on (duty backup). This continues until the last pump comes on and if it cannot cope the first pump comes back on to assist the last pump (duty assist) if the level continues to rise all other pumps will come on (assist) in turn until the level decreases to the pump off points. Each pump has its own setpoints, ( $\mathrm{P} * 213$, 223, 233, 243, 253, $263 \& P * 214,224$, 234, 244, 254, 264). |
| 6= Service ratio duty assist | All pumps are used to assist each other (run at the same time) and each pump has its own setpoints ( $\mathrm{P} * 213,223,233$, 243, 253, 263 \& $P * 214,224,234,244$, 254, 264). And a service ratio setting. The third setpoint ( $\mathrm{P} * 215,225,235$, $245,255,265$ ) is used to set the service ratio. Each time a pump is required to start then the pump with the least running hours (with respect to the service ratio) is started (i.e. the setpoints are re-assigned accordingly). <br> For example, if two pumps A and B have the service ratio set to 2 and 1 respectively, then pump A will operate for twice as many hours as pump B. |


| Pump Duty | Description |
| :---: | :---: |
| 7= Service ratio duty backup | If a pump fails to meet the demand (due to malfunction, intake blockage and so on), then it is stopped and another pump shall take over. Each time a pump is required to start then the pump with the least running hours (with respect to the service ratio) is started (i.e. the setpoints are re-assigned accordingly). Each pump has its own setpoints ( $\mathrm{P} * 213,223,233$, 243, 253, $263 \& \mathrm{P} * 214,224,234,244$, $254,264)$. The third setpoint ( $\mathrm{P} * 215$, $225,235,245,255,265$ ) is used to set the service ratio. For example, if two pumps A and B have the service ratio set to 2 and 1 respectively, then pump A will operate for twice as many hours as pump B. |
| 8= First On First Off, alternate duty assist | The first pump switched on is the first pump to be switched off, etc. regardless of the set points, so the setpoints are dynamically changed to enable this. |
| $9=$ Service Ratio Standby | When a service ratio duty is being used, on all other pumps in use, the standby pump can be started on a ratio basis only, when it will assume the setpoints of the next pump to start. The third setpoint ( $\mathrm{P} * 215,225,235,245,255$, 265 ) is used to set the service ratio. |
| 10 = Two Pump Sets | There are four pumps. Two rotate their start-up sequence with each other. If the two pumps cannot keep up, the level rise to the setpoints of the other two pumps which take over and rotate their sequence with each other. |

## Important Information

The pumps are started and stopped at the "ON" and "OFF" setpoints. To pump down (reduce level) then set "ON" higher than "OFF". To pump up (increase level) then set "ON" lower than "OFF".

The third parameter for each relay determines the pump group. You can have two groups of pumps, and all similar duties within that group will operate together.

## P*212, P*222, ${ }^{*}$ *232, ${ }^{*}$ *242, $P^{*}$ 252, $P^{*} 262$ - Relay Pump Group

By default, all pump groups are set to $\mathbf{1}$, but if you want to have another group, then set this parameter to 2 , for each pump relay that should operate together as part of a second group on the same point of measurement.

The fourth parameter and the fifth parameter for each relay set the pump "ON" and "OFF" points, which are entered in Measurement Units $\mathbf{P}^{* 104}$. For pump down the "ON" is set higher than "OFF". For pump up then "ON" is set lower than "OFF". See the appropriate pump duty, function table $(\mathbf{P} * \mathbf{2 1 2}, \mathbf{2 2 2}, \mathbf{2 3 2}, \mathbf{2 4 2}, \mathbf{2 5 2}, 262)$ for further information.

## P*213, P*223, P*233, P*243, P*253, P*263 - Relay Setpoint 1

This parameter determines the "ON" point of the pump.

## P*214, P*224, P*234, P*244, P*254, P*264 - Relay Setpoint 2

This parameter determines the "OFF" point for the pump.
The sixth parameter will determine the service ratio that will be used to switch the pump, when the pump duty selected is a Service Ratio duty.

When $\mathbf{P} * \mathbf{2 1 1}, \mathbf{2 2 1}, \mathbf{2 3 1}, \mathbf{2 4 1}, 251,261=6,7$ or 9 (Service ratio)

## $P^{*} 215, P^{*} 225, P^{*} 235, P^{* 245} P^{*} 255, P^{*} 266$ - Relay Setpoint 3

This parameter determines the Service Ratio in values of \%. See the appropriate pump duty function, table ( $\mathbf{P} * \mathbf{2 1 1}, \mathbf{2 2 1}, \mathbf{2 3 1}, \mathbf{2 4 1}, \mathbf{2 5 1}, 261$ ), for further information.

This parameter determines which point of measurement the relay will react to.

| Option | Description |
| :--- | :--- |
| 1= Point 1 (Default) | Relay acts on Point 1calculated levels. |
| $2=$ Point 2 | Relay acts on Point 2 calculated levels. |

## P*219, P*229, P*239, P*249, P*259, P*269 - Relay Max.Rate

This parameter will allow a pump to be switched at a pre-determined Rate of change of Level, irrespective of the "ON" level setpoint $\mathrm{P} * 213,223,233$, 243, 253, 263. Once a General Control relay has been switched "ON" by the pre-determined Rate of Change, it will remain energised until the level reaches the "OFF" level setpoint $\mathbf{P}$ *214, 224, 234, 244, 254, 264.

Max. Rate is entered in Measurement Units ( $\mathrm{P}^{*} 104$ ) per minute and can be entered as either positive (increasing level) or negative (decreasing level) values.

## Control

## P1 and P2

When $P * 210,220,230,240,250,260=3(C o n t r o l)$
When a relay is being set up as a control relay, the second parameter that will be displayed in the menu determines its function.

## $P^{*} 211, P^{*} 221, P^{*} 231, P^{*} 241, P^{*} 251, P^{*} 261$ Relay Function,

This function allows the relay to be assigned to specific control functions (other than pumps and alarms) several of these functions work in relation to time.

This can be used to activate devices based on elapsed time or running cycles, such as a timed rake control to keep a ram lubricated if idle for long periods, or flush valve operation.

| Options | Description |
| :--- | :--- |
| $0=$ Off | Relay is always de-energised |
| $1=$ Time | Relay will energise "ON" after the Cycle |
|  | time that is set in Relay Setpoint $2(\mathrm{P} * 214$, |
|  | $224,234,244,254,264)$. And turns "OFF", |
|  | de-energises, after the On-Time Period that <br> is set in Relay Setpoint 1 (P*213, 223, 233, <br> $243,253,263) ~$ |


| Options | Description |
| :---: | :---: |
| 2=Step Time | Step Time Control allows relays to be used to control a device, such as a motorised valve or gate, in order to maintain the level within two predetermined points. Relays will energise "ON" when Step Time condition is in effect and de-energises "OFF" when Step Time goes off. One relay will be required to control an increase in level, ('open' the device) and a second relay is required to control a decrease in level, ('close' the device). Alarm ID ( $\mathrm{P} * 212,222,232,242,252,262$ ) is used to assign the relay to control either the open or close condition. Step Time Control relay requires three setpoints. The first set point ( $\mathrm{P} * 213,223,233,243,253,263$ ) determines the level, at which the relay is to be activated, (N.B. level setpoint for open relay, increase the level, must be lower than the setpoint for the close relay, decrease the level). The relay will energise "ON" after the Limit time that is set in Relay Setpoint 3 ( $\mathrm{P} * 215,225,235$, 245, 255, 265). And turns "OFF", deenergises, after the Drive Period that is set in Relay Setpoint 2 ( $\mathrm{P} * 214,224,234,244,254$, 264). |
| 3 = General Control | Control is based on the level in the vessel. All general controls are used to assist each other (run at the same time) and each general control relay has its own "ON" and "OFF" setpoints. Two setpoints are required, "ON" ( $\mathrm{P} * 213,223,233,243,253,263$ ) and "OFF" ( $\mathrm{P} * 214,224,234,244,254,264$ ). |

## Important Information

General Control relays are started and stopped at the "ON" and "OFF" setpoints. To control down (reduce level) then set "ON" higher than "OFF".
To control up (increase level) then set "ON" lower than "OFF".

The third parameter for each relay determines the assignment or condition of the relay, where required.

## $P^{*} 212, P^{*} 222, P^{*} 232, P^{*} 242, P^{*} 252, P^{*} 262$ Relay Alarm ID/Pump Group,

## When P*211, 221, 231, 241, 251, 261 = 1 (Time), or 3 (General Control)

This parameter has no function and will not be displayed.
When $\mathrm{P} *$ 211, 221, 231, 241, 251, $261=2$ (Step Time)
If the relay is selected for Step Time, then this parameter is used to assign the relay to the $\mathbf{0}=\mathbf{O p e n}$ condition (increase level) or $\mathbf{1}=$ Close condition (decrease level).

The fourth parameter, fifth parameter and sixth parameter are set to determine the switch points, "ON" and "OFF" for the relay and where required the order of start. See control function, table ( $\mathbf{P} * \mathbf{2 1 1}, \mathbf{2 2 1}, \mathbf{2 3 1}, \mathbf{2 4 1}$, $\mathbf{2 5 1}, 261$ ) for further information.

## $P^{* 213} P^{*}$ 223, $P^{*}$ 233, $P^{*}$ 243, $P^{*} 253$, $P^{*} 263$ Relay Setpoint 1

When $P * 211,221,231,241,251,261=1$ (Time)
This parameter determines the "Time Period" that the relay will remain "ON".
Relay Setpoints are entered in Minutes.
See the appropriate relay Function tables ( $\mathbf{P}$ *211, 221, 231, 241, 251, 261) for further information.

When P *211, 221, 231, 241, 251, $261=2$ (Step Time)
This parameter will determine the "level" at which the relay will become active. Relay Setpoint 1 is entered in values of Measurement Units ( $\mathbf{P}^{*}$ 104)

See the appropriate relay function tables $(\mathbf{P} * \mathbf{2 1 1}, \mathbf{2 2 1}, \mathbf{2 3 1}, \mathbf{2 4 1}, \mathbf{2 5 1}, \mathbf{2 6 1})$ for further information.

P*211, 221, 231, 241, 251, $261=3$ (General Control)
This parameter determines the "ON" point of the relay.
Relay Setpoint 1 is entered in values of Measurement Units (P104)
See the appropriate relay function tables $(\mathbf{P} * \mathbf{2 1 1}, \mathbf{2 2 1}, \mathbf{2 3 1}, \mathbf{2 4 1}, \mathbf{2 5 1}, \mathbf{2 6 1})$ for further information.

When $P * 211,221,231,241,251,261=1$ (Time)
This parameter determines the "Cycle Time" for the operation of the relay.
See the appropriate relay Function tables ( $\mathbf{P} * \mathbf{2 1 1}$, 221, 231, 241, 251, 261) for further information.

When $\mathbf{P} * \mathbf{2 1 1}, 221,231,241,251,261=2$ (Step Time)
Relay Setpoints are entered in Seconds to set Drive Period, the time that the relay will remain ON

See the appropriate relay Function tables ( $\mathbf{P} * \mathbf{2 1 1}, \mathbf{2 2 1}, \mathbf{2 3 1}, \mathbf{2 4 1}, \mathbf{2 5 1}, 261$ ) for further information.

When $P * 211,221,231,241,251,261=3$ (General Control)
This parameter determines the "OFF" point of the relay.
Relay Setpoints are entered in values of Measurement Units (P*104)
See the appropriate relay Function tables (P2*11, 221, 231, 241, 251, 261) for further information.

## P*215, P*225, P*235, P*245, P*255, P*265 Relay Setpoint 3

When P *211, 221, 231, 241, 251, $261=2$ (Step Time)
This parameter is used to determine the Limit Time between each Drive Period. Relay Setpoints are entered in Minutes, during which time the relay will remain OFF.

See the appropriate relay Function tables ( $\mathbf{P} \boldsymbol{*} \mathbf{2 1 1}$, 221, 231, 241, 251, 261) for further information.

When $\mathbf{P}$ *211, 221, 231, 241, 251, $261=1$ Time or 3 (General Control)
This parameter has no function and will not be displayed.
$P^{*} 216, P^{*} 226, P^{*} 236, P^{\star} 246, P^{*} 256, P^{*} 266$ - Relay Allocation
When $\mathrm{P} * 211,221,231,241,251,261=1$ (Time)
This parameter has no function and will not be displayed.

## $\mathbf{P} * 211,221,231,241,251,261=2($ Step Time)

| Option | Description |
| :--- | :--- |
| 1= Point 1 (Default) | Relay acts on Point 1calculated levels. |
| $2=$ Point 2 | Relay acts on Point 2 calculated levels. |

When $P^{*}$ 211, 221, 231, 241, 251, 261 = 3 (General Control)
This parameter determines which point(s) of measurement the relay will react to.

| Option | Description |
| :--- | :--- |
| 1 = Point 1 (Default) | Relay acts on Point 1 calculated levels. |
| $2=$ Point 2 | Relay acts on Point 2 calculated levels. |
| $3=$ Avg. $1 \& 2$ | Relay acts on calculated average level of 1 \& 2. |
| $4=$ Sum $1+2$ | Relay acts on calculated sum level of 1 \& 2. |
| 5= Diff. $1-2$ | Relay acts on calculated differential level of 1-2 |

## Miscellaneous

## P1 and P2

When P *210, 220, 230, 240, 250, $260=4$ (Miscellaneous)
When a relay is set to be a miscellaneous relay, the second parameter determines its function.

## $P^{*} 211, P^{*} 221, P^{*} 231, P^{* 241, ~ P * 251, ~ P * 261 ~-~ R e l a y ~ F u n c t i o n, ~}$

This function allows the relay to work in relation to a clock or a specific event and will be set to activate in relation to Real Time.

\begin{tabular}{|c|c|}
\hline Options \& Description <br>
\hline 0 = Off (Default) \& Relay Off de-energised <br>
\hline 1 = Clock \& Relay will energise ON at a specified time each day as set in Relay Setpoint $1(\mathrm{P} * 213,223,233$, 243, 253, 263). And turns OFF, de-energises, after the specified-On Time period as set in Relay Setpoint 2 ( $\mathrm{P} * 214,224,234,244,254,264$ ) <br>
\hline $2=$ Totaliser

Only when \& Relay will energise ON momentarily each time the specified flow has passed as set in Relay setpoint $1(\mathrm{P} * 213,223,233,243,253,263)$ this parameter sets the multiplication factor which will be applied <br>
\hline Mode ( $\mathbf{P 1 0 0}$ ) is set: 4 = (OCM Head) or $5=($ OCM Flow $)$ \& to the on board totaliser (P1-820/P2-820) to determine the switch point of the relay. E.g. if the totaliser is set to totalise in cubic metres and the relay is required to provide a closure every 10,000 litres Relay setpoint 1 would be set to 10 . Relay setpoint $2(\mathrm{P} * 214,224,234,244,254,264)$ is used to select the time the relay will remain closed in seconds. <br>
\hline
\end{tabular}

Important Information
When using a Relay to control a device at a specified time of day ensure that the Time P*932 is set correctly. And if required, enable Daylight Saving for the appropriate time difference $\mathbf{P} \boldsymbol{\mathbf { 9 7 0 }} \mathbf{- \mathbf { P } * 9 7 9}$.

The third parameter has no function when miscellaneous relay is chosen and will not be displayed.

The fourth parameter, and fifth parameter, are set to determine the switch points, "ON" and "OFF" for the relay. See miscellaneous function table $(\mathbf{P} * \mathbf{2 1 1}, \mathbf{2 2 1}, \mathbf{2 3 1}, 241,251,261)$ for further information.

## P*213, P*223, P*233, P*243, P*253, P*263 - Relay Setpoint 1

When $\mathrm{P} *$ 211, 221, 231, 241, 251, 261 = 1 (Clock)
Relay Setpoints are entered in Hours \& Minutes (HH:MM) to set Time at which relay will energise. Default =00:00 (HH:MM)

When $P * 211,221,231,241,251,261=2$ (Totaliser)
Relay Setpoints are entered as a factor by which the on board totaliser (P1-820/P2-820) should be multiplied by to provide a relay closure. Default = 0.00

## P*214, P*224, P*234, P*244, P*254, P*264 - Relay Setpoint 2

When $P * 211,221,231,241,251,261=1$ (Clock)
Relay Setpoints are entered in Minutes to set Time Period that the relay will remain ON. Default $=\mathbf{0 . 0 0} \mathbf{~ m i n s}$.

When $P^{*}$ 211, 221, 231, 241, 251, $261=2$ (Totaliser)
Relay Setpoints are entered in seconds to set the time period that the relay will remain 'ON'. Default $=\mathbf{0 . 0 0}$ secs.
$P^{* 216}, P^{* 226}, P^{*} 236, P^{*} 246, P^{* 256}, P^{*} 266$ - Relay Allocation
When $P * 211,221,231,241,251,261=1$ (Clock)
This parameter has no function and will not be displayed.

This parameter determines which totaliser the relay is assigned to.

| Option | Description |
| :--- | :--- |
| 1= Totaliser 1 (Default) | Relay acts on Totaliser 1 calculated values. |
| $2=$ Totaliser 2 | Relay acts on Totaliser 2 calculated values. |

## Common Parameters

## P1 and P2

## P*217, P*227, P*237, P*247, P*257, P*267-Relay Closures

This parameter will record how many times each relay is operated, this parameter displays the number of times the relay has activated since the relay has been in use. It can be reset with any value.

## $P^{*} 218, P^{*} 228, P^{*} 238, P^{*} 248, P^{*} 258, P^{*} 268$ - Relay Fail Safe

Your Ultra Twin has a general fail-safe for each point of measurement, parameter P1-808 or P2-808. However, this can be overridden so that each individual relay has its own independent fail safe mode.

This parameter determines what the relay will do in the event of the Failsafe Time ( $\mathbf{P 1} \mathbf{- 8 0 9}$ or $\mathbf{P} 2-809$ ) expiring.

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | Relay assumes system default mode P808 |
| $1=$ Hold | Relay remains in its current state |
| $2=$ De-Energise | Relay will De-Energise |
| $3=$ Energise | Relay will Energise |

## Pump "Advanced" Parameters

The following parameters are used to set the "Advanced" Pump features.

## Pump Run On

P1 and P2
This feature is used to periodically allow the pumps to continue operating below their normal "OFF" point, in order to discharge any sediment that may have settled at the bottom of the vessel.

## P*349 Prime Level

Sets the required level to ensure pumps are fully primed after a pump run on has occurred. Following a pump run on, any pump, whose "ON" point is below the Prime Level will be held "OFF" until the Prime Level has been exceeded.

## P*350 Run Interval

Set required time period, in hours, at which pump run on should occur.

## P*351 Run Duration

This parameter sets the length of time, in seconds, that pumps will run on for, it should be noted that only one run on is allowed per Run Interval.

## Starting

## P1 and P2

This feature is used to reduce the effects of power surges, caused by switching of pumps, in the following instances, (P352) Power surge (mains or hydraulic) that is generated when multiple pumps are started simultaneously, (P353) Power resumption following a power failure.

## P*352 Start Delay

Set the required time period, in seconds, that should elapse between pumps starting. Default $=\mathbf{1 0}$ seconds.

## P*353 Power Delay

Set the required time period, in seconds, that should elapse before pumps are allowed to start following a power failure. Default = $\mathbf{1 0}$ seconds.

## Stopping

## P1 and P2

If required, this feature will prevent pumps, with a common "OFF" point being switched off all at the same time pumps will be switched "OFF" in turn as determined by the delay set in P348 Stop Delay.

## P*348 Stop Delay

Set the required time period, in seconds, that should elapse between pumps stopping. Default $=\mathbf{0} .0$ seconds.

## Pump Exercising

## P1 and P2

This feature is used to reduce idle pump corrosion and sediment build up. Pumps are allowed to run after a specified Idle Time (P355) for a determined period of Exercise time (P356), providing a Minimum head /level (P357) is present and all other pumps are switched off.

## P*354 Exercise Enable

This parameter determines if Pump Exercising is enabled or disabled.

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ No (Default) | Pump Exercising disabled |
| $1=$ Yes | Pump Exercising enabled |

## P*355 Idle Time

Sets the Idle Time to elapse before Pump Exercising is to be activated.
Set the required time period in minutes. Default $=\mathbf{7 2 0}$ minutes

## P*356 Exercise Time

Set the required Exercise Time in seconds. Default = $\mathbf{3 0}$ seconds

## P*357 Minimum Head

To prevent the dry running and the possibility of cavitation, of the pump, enter the minimum level (head) of material, in metres, that is to be present before permitting pump exercising to take place.

## Wall Cling

## P1 and P2

To reduce material build up (such as fat), on the wall of the sump or vessel, at the "normal" material level the pump setpoints can be varied within a specified band.

For Pump Down applications the relay setpoints for the pumps will be randomly varied within the band specified, somewhere below ON, but to a maximum of the setting, and somewhere higher than OFF, but to a maximum of the setting.

For Pump Up applications the relay setpoints for the pumps will be randomly varied within the band specified somewhere higher than ON, but to a maximum of the setting, and somewhere lower than OFF, but to a maximum of the setting.

## P*360 Wall Cling

Enter the maximum band, of variation, required in measurement units ( $\mathrm{P} * 104$ ).

## Digital Inputs

## About Digital Inputs

The digital inputs are used to provide the Twin with information on the operational status and condition of pumps, valves, and other process control devices. Based on the information supplied, by the inputs, the Twin, will make intelligent decisions and modify its control regime to meet the demand of the prevailing operational requirements.

The parameters used to program the Digital inputs are as follows:
Common Parameters P*300 to P*306
Digital Input 1 P*372 to $\mathbf{3 7 4}$ Digital Input 2 P*375 to $\mathbf{3 7 7}$
Digital Input 3 P*378 to 380 Digital Input 4 P*381 to 383
Digital Input 5 P*384 to $386 \quad$ Digital Input 6 P*387 to 389

## Digital Input 7 P*390 to 392

## Important Information

The Twin provides 4 Digital Inputs on the Wall mount model and seven on the Fascia model.

## Common Parameters Set-up

These parameters determine specific operational criteria for particular digital input functions and are common to each digital input.

## Input Type

The digital inputs can be either voltage source, where Twin will supply the switching voltage, or voltage synch, where the switching voltage is supplied by the input from the device, for full details see Chapter 2 Installation. Both voltage source and voltage synch. inputs can be configured for N.O. or N.C. operation as determined by the digital input Type $\mathbf{P} * 372,375,378,381,384$, 387, $\mathbf{3 9 0}$ when set to $\mathbf{1}=$ Input N.C., Twin will recognise a closed condition, D.C. signal voltage present at input, as a healthy condition, alternatively, an open condition, D.C. signal voltage not present at input, indicating a healthy condition, can be chosen as a valid input by selecting $2=$ Input N.O.

## Input Function

Individual inputs can be configured for any one of a number of Functions as determined by $\mathbf{P} * \mathbf{3 7 3}, \mathbf{3 7 6}, \mathbf{3 7 9}, \mathbf{3 8 2}, \mathbf{3 8 5}, \mathbf{3 8 8}, 391$ these functions are as follows:

1 = Device Fail input will provide a signal indicating a "failure" or the presence of a "run" signal from the device. When using digital inputs to detect a "run" condition the input is assumed to be in its operational status until the expiry of $\mathbf{P * 3 0 4}$ Input Delay which is used to determine the delay time that occurs from the time that the device is called to "run" and the digital input providing a signal appropriate to its operational status.
$\mathbf{2}=$ Duty $\quad$ input will provide a signal to manually select the lead device.
$\mathbf{3}$ = Override $\mathbf{O N}$ input will provide a signal to override all selected pump setpoints "ON".
$4=\mathbf{O v e r r i d e}$ OFF input will provide a signal to override all selected pump setpoints "OFF".

5 = Reset $\quad$ input will provide a signal to reset all Device Fail signals.

6 = Inhibit Meas. Input will provide a signal to inhibit the measurement of the point it is allocated too.

## Device Fail

The digital inputs are used to indicate a 'fail' situation which effect devices, which are connected to the relay outputs of the Twin, e.g. failure of a pump, screen, valve, etc. This information is then used to initiate changes to the Twins control regime to meet the demands of the situation.

Let us consider the example of an application using 2 pumps, each pump has the capability to provide a signal indicating its 'run' status. Each pump is connected and controlled by one of the Twin relay outputs, the duty and setpoints have been programmed as detailed in Using the Relays, earlier in this chapter. The signals providing details on the pumps 'run status' are connected to the digital inputs as described in Chapter 2 Installation, and the input Type $\mathbf{P} * \mathbf{3 7 2 , 3 7 5 , 3 7 8 , 3 8 1 , 3 8 4 , 3 8 7 , 3 9 0}$ is configured as detailed in Input Type, earlier in this chapter.

Pump 1 is connected and programmed to operate on Relay 1
Pump 2 is connected and programmed to operate on Relay 2
Pump 1 Fail signal is connected to Digital Input 1
Pump 2 Fail signal is connected to Digital Input 2
Each digital input must be assigned to the device relay output that it relates to, this is determined by Assignment P*374, 377, 380, 383, 386, 389, 392. In the case of our example Digital Input 1 will be assigned to Relay 1 ( $\mathbf{P} * 374$ =1) and Digital Input 2 will be assigned to Relay 2 ( $\mathbf{(} \boldsymbol{*} 377=2$ ).

When the level rises to the ON Setpoint of Relay 1, the relay will energise, and Pump 1 will 'start', in the normal manner. If the pump starts and runs correctly no change of 'run' status will be seen on the digital input and the pump(s) will be allowed to operate as programmed.

Should a pump fail, a change of 'run' status would be seen and a Device Fail, condition would be detected on the corresponding digital input, this will result in the relay for the 'failed' pump being de-energised, and the pump being switched OFF. The setpoints of the 'failed' pump will then be passed to the second pump, which will take over to complete the pumping operation.

The decision on whether or not to attempt to start the failed pump on subsequent pump cycles will be determined by $\mathbf{P *} \mathbf{3 0 0}$ Max. Attempts. Once the number of attempts stipulated have been made the pump will be put out of service until such time the Device Fail input is cleared by a Reset $(\mathbf{P} * 391$ = 4) on Digital Input 7. Alternatively, the $\boldsymbol{+}=$ key can be used as a as a Hot Key, which when pressed, whilst the unit is in RUN, will give details of any Device Fail and provides prompts to Reset any failures to the no-fault condition.

## Duty

When this function is selected, the digital inputs are used to determine, via an 'auto/manual' switch, which one of the devices, connected to the relay outputs of the Twin, will be the "lead" or "duty" device.

Consider the example of an application using 2 pumps. Each pump is connected and controlled by one of the Twin relay outputs, the pump duty and setpoints have been programmed as detailed in Using the Relays, earlier in this chapter. The signals providing details on the "lead" or "duty" pump 'status' are connected to the digital inputs as described in Chapter 2 Installation, and the input Type $P^{* 372}, 375,378,381,384,387,390$ is configured as detailed in Input Type, earlier in this chapter.

Pump 1 is connected and programmed to operate on Relay 1
Pump 2 is connected and programmed to operate on Relay 2
Pump 1 Duty signal is connected to Digital Input 3
Pump 2 Duty signal is connected to Digital Input 4
The type of switch to be used to determine the duty is selected and configured as detailed in P*301 Switch Mode.

## Standard Switch Mode (P*301 = 0 Standard)

When a standard rotary type switch is used, to determine auto/manual duty one input per device is required, with each input being assigned to the appropriate device relay output that it relates to, this is determined by Assignment $\mathbf{P} * \mathbf{3 7 4 , 3 7 7 , 3 8 0 , 3 8 3 , 3 8 6 , 3 8 9 , 3 9 2}$. In the case of our example Digital Input 3 will be assigned to Relay $1(P * 380=1)$ and Digital Input 4 will be assigned to Relay $2(\mathbf{P} * 383=2)$.

When the duty switch is in the "auto" position, no signals are present on either Digital Input 3 or Digital Input 4 and devices will run in the "auto" mode, as determined by the Twin, in accordance with its programmed settings. If a signal is seen on Digital Input 3, duty switch selected for Pump $\mathbf{1}$, then the pump connected to Relay 1 will assume the role of "lead"/ "duty" pump, regardless of the settings programmed in the Twin.

When the level rises to the ON Setpoint, for the first pump, relay 1 will energise and Pump 1 will 'start', in the normal manner. If the level continues to rise, then relay 2 will energise and Pump 2 will start in accordance with the settings programmed for pump 2.

If a signal is seen on Digital Input 4, duty switch selected for Pump 2, then the pump connected to Relay 2 will assume the role of "lead"/ "duty" pump, regardless of the settings programmed in the Twin. When the level rises to the ON Setpoint, for the first pump, the relay 2 will energise and Pump 2 will 'start', in the normal manner. If the level continues to rise, then relay 1 will energise and Pump 1 will start in accordance with the settings programmed for pump 2.

## Binary Switch Mode ( $\mathbf{P} * 301$ = 1Binary $)$

When a binary switch is used, to determine auto/manual duty, the number of inputs required will be dependent on the number of devices to be included in the duty selection. In this mode, the duty device will be selected according to the binary input present on the appropriate inputs and there is therefore no requirement to assign the duty switch inputs to specific device relay. The selection of the Lead/Duty device is determined by the presence of an input as detailed in the table below, where $\mathbf{0}=$ no input present and $\mathbf{1}=$ input present

| Duty <br> Input 1 | Duty <br> Input 2 | Duty <br> Input 3 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| Lead/Duty <br> Device |  |  |
| 1 | 0 | 0 |
| Auto |  |  |
| 0 | 1 | 0 |
| Relay 1 |  |  |
| 1 | 1 | 0 |
| 0 | 0 | 1 |
| 1 | 0 | 1 |
| 0 | 1 | 1 | Relay 2 3.

Consider the example of an application using 2 pumps. Each pump is connected and controlled by one of the Twin relay outputs, the pump duty and setpoints have been programmed as detailed in Using the Relays, earlier in this chapter. The signals providing details on the "lead" or "duty" pump 'status' are connected to the digital inputs as described in Chapter 2 Installation, and the input Type $\mathbf{P} * 372$, 375, 378, 381, 384, 387, 390 is configured as detailed in Input Type, earlier in this chapter.

Pump 1 is connected and programmed to operate on Relay 1
Pump 2 is connected and programmed to operate on Relay 2
Duty Input 1 signal is connected to Digital Input 3
Duty Input 2 signal is connected to Digital Input 4
When no signals are present on either Digital Input 3 or Digital Input 4 then devices will run in the "auto" mode, as determined by the Twin, in accordance with its programmed settings. If a signal is seen on Digital Input 3, duty selected for Pump 1, then the pump connected to Relay 1 will assume the role of "lead"/ "duty" pump, regardless of the settings programmed in the Twin. When the level rises to the ON Setpoint, for the first pump, relay 1 will energise and Pump 1 will 'start', in the normal manner. If the level continues to rise, then relay 2 will energise and Pump 2 will start in accordance with the settings programmed for pump 2.

If a signal is seen on Digital Input 4, duty selected for Pump 2, then the pump connected to Relay 2 will assume the role of "lead"/ "duty" pump, regardless of the settings programmed in the Twin. When the level rises to the ON Setpoint, for the first pump, the relay 2 will energise and Pump 2 will 'start', in the normal manner. If the level continues to rise, then relay 1 will energise and Pump 1 will start in accordance with the settings programmed for pump 2.

## Override

A digital input can be assigned to receive an input, which will override the setpoints of the pumps and start them, as determined by the Override Level ( $\mathbf{P} * 306$ ) and providing the level is above the Min. Override ( $\mathbf{P}$ *303), immediately after the expiry of the Override Delay ( $\mathbf{P} * 302$ ). A digital input can also be assigned to receive an input, which will override the setpoints of the pumps and stop them immediately after the expiry of the Override Delay ( $\mathbf{P} * 302$ ).

## Reset

This option is only available on Digital Input $7 \mathbf{P} \mathbf{3 9 1}=\mathbf{5}$ when selected a valid signal received on this input will Reset all Device Fail signals to the nofault condition. When using this function, the unit will check all inputs for such conditions so there is no requirement to assign the input to a specific relay output. Alternatively, the $\boldsymbol{+}$ - key has been allocated as a Hot Key, which when pressed will give details of any Device Fail and provides prompts to Reset any failures to the no-fault condition.

## Digital Input Parameters

The following parameters are used to configure the use of the digital inputs.

## Common Par.

## P1 and P2

These parameters are common to each of the digital inputs and set specific operational criteria for particular functions.

## P*300 Max Attempts

When digital inputs are used to detect device failure this parameter determines the number of attempts that will be made before failing the device and putting it out of service. When the number of attempts is set to ' 0 ', there is no restriction on the number of starts. The digital inputs will provide a fail signal in the normal manner and initiate any action as required, but the device will not be put out of service. Any figure other than 0 will determine the number of attempts that will be made to start the device before putting it out of service until such time that the input is reset.

Set the number of attempts Min. 0, Max 99. Default = $\mathbf{1}$

## P*301 Switch Mode

When an external duty switch is used, this can be connected via the digital inputs and facilitate the selection of the duty device manually, thereby overriding the duty programmed within the unit.

This parameter determines the type of switch in use.

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Standard (Default) | A standard switch, e.g. rotary switch, can be <br> used with one switch position and a digital <br> input required for each pump. |
| 1 = Binary | To reduce the number of digital inputs used, <br> for manual duty selection, a binary switch <br> can be supplied. Max. No. of digital inputs <br> required being three. |

## P*302 Override Delay

A digital input can be assigned to receive an input, which will override the setpoints of the pumps and start them, providing the level is above the Min. Override ( $\mathbf{P} * 303$ ), immediately after the expiry of the Override Delay.

Enter the required delay time in minutes. Default $=\mathbf{0} .0$ metres.

## P*303 Min Override

Determines the minimum level required before an Override Delay ( $\mathbf{P} * 302$ ) will be in effect.

Enter the required level in Measurement Units ( $\mathbf{P} * 104$ ).
Default $=0.0 \mathrm{mtrs}$.

## P*304 Input Delay

This parameter determines the delay applied, from the time a device (relay) is called to "run" and when the status of the digital input is recognised as a valid input. If the digital input is used to detect a "running" signal this parameter should be set to reflect the time it takes from the device being called to "run" to the input being in its operational status.

Enter the required delay time in seconds. Default $=\mathbf{1 0}$ seconds.

## P*305 Input Filter

This parameter is used to ignore spurious changes of state on the digital inputs and determines the time that a change of state has to be present before it is recognised as a valid input.

Enter the required filter time in seconds. Default =1 second.

## Digital Inputs

## P1 and P2

The Twin provides 4 Digital Inputs on the Wall mount model and seven on the Fascia model.

The following parameters are used to configure the use of the digital inputs.

## $P^{*} 372, P^{*} 375, P^{*} 378, P^{*} 381, P^{*} 384, P^{*} 387, P^{*} 390-$ Type

Determines the way digital inputs will be recognised by the Ultra Twin.

| Option |  |
| :--- | :--- |
| $1=$ Input N.C. | Description |
| $2=$ Ultra Twin recognises a closed condition, |  |
| D.C. signal voltage present at the input, as |  |
| a healthy/run condition. |  |$|$| Ultra Twin recognises an open condition, |
| :--- |
| D.C. signal voltage not present at the input, |
| as a healthy/run condition. |

## $P^{*} 373, P^{*} 376, P^{*} 379, P^{*} 382, P^{*} 385, P^{*} 388, P^{*} 391$ - Function

This parameter will set the function of the digital Input.

| Option | Description |
| :---: | :---: |
| 1 = Device Fail | Digital input is used to Fail, (put out of service), a device connected to the relay specified in $P * \mathbf{3 7 4}, \mathbf{3 7 7}, \mathbf{3 8 0}, \mathbf{3 8 3}, \mathbf{3 8 6}, \mathbf{3 8 9}$, 392 Assignment. |
| 2 = Duty | Digital input is used to select the device, (pump), connected to the relay specified in $\mathbf{P} * 374,377,380,383,386,389,392$ Assignment as the current duty device (pump). |


| Option | Description |
| :--- | :--- |
| 3 = Override On | Digital input is used to provide a signal to <br> instigate an Override and switch all Pump <br> relays "ON", as determined by $\mathbf{P} * \mathbf{3 7 4 , 3 7 7}$, <br> 380, 383, 386, 389, 392 (Assignment), <br> $\mathbf{P * 3 0 2}($ Override Delay) and $\mathbf{P} * \mathbf{3 0 3}$ (Min. <br> Override). |
| 4 = Override Off | Digital input is used to provide a signal to <br> instigate an Override and switch all Pump <br> relays "OFF", as determined by $\mathbf{P * 3 7 4 ,}$ <br> 377, 380, 383, 386, 389, 392 (Assignment), |
| $\mathbf{P * 3 0 2 ~ ( O v e r r i d e ~ D e l a y ) ~ a n d ~} \mathbf{P * 3 0 3}$ (Min. |  |
| Override). |  |

## $P^{\star} 374, P^{\star} 377, P^{*} 380, P^{\star} 383, P^{\star} 386, P^{\star} 389, P^{\star} 392$ Assignment

When $\mathbf{P} * \mathbf{3 7 3}, \mathbf{3 7 6}, \mathbf{3 7 9}, \mathbf{3 8 2}, \mathbf{3 8 5}, \mathbf{3 8 8}, 391=1$ (Device Fail) or 2 (Duty)
This parameter assigns the digital input to the appropriate device relay that the Function, ( $\mathbf{P} * 373,376,379,382,385,388,391)$, is to be applied.

| Option | Description |
| :--- | :--- |
| $0=$ None | Digital Input is not assigned to any relay. |
| $\mathbf{1}=$ Relay $\mathbf{1}$ (Default) | Digital input is assigned to Device <br> connected to Relay 1. |
| 2 = Relay 2 | Digital input is assigned to Device <br> connected to Relay 2. |
| 3 = Relay 3 | Digital input is assigned to Device <br> connected to Relay 3. |
| 4 = Relay 4 | Digital input is assigned to Device <br> conneted to Relay 4. |
| 5 = Relay 5 | Digital input is assigned to Device <br> connected to Relay 5. |
| $6=$ Relay 6 | Digital input is assigned to Device <br> connected to Relay 6. |

When $\mathbf{P} * 373,376,379,382,385,388,391=3$ (Override ON) or 4 (Override OFF)

This parameter assigns the digital input to the appropriate device relay that the Function, ( $\mathbf{P} * \mathbf{3 7 3}, \mathbf{3 7 6}, \mathbf{3 7 9}, \mathbf{3 8 2}, 385,388,391$ ), is to be applied.

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ None (Default) | Digital Input is not assigned to either <br> point of measurement. |
| $1=$ Point 1 | Digital input is assigned to operate on <br> pump relays allocated to Point 1. |
| $2=$ Point 2 | Digital input is assigned to operate on <br> pump relays allocated to Point 2. |
| $3=$ Point 1 \& 2 | Digital input is assigned to operate on <br> pump relays allocated to both Point 1 \& 2 |

When $\mathbf{P}$ *373, 376, 379, 382, 385, 388, $391=6$ (Inhibit Measurement)
This parameter assigns the digital input to the appropriate device relay that the Function, ( $\mathbf{P} * 373,376,379,382,385,388,391)$, is to be applied.

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Channel 1 (Default) | Digital Input is assigned to Inhibit <br> Measurement on Point 1. |
| $1=$ Channel 2 | Digital Input is assigned to Inhibit <br> Measurement on Point 2. |

## Data Log Parameters

The data log parameters contain the following information.

## Totaliser Audits

P1 or P2
When P1-100, P2-100 = 4 (OCM Head) or 5 (OCM Flow)

## P1-460 to 479, P2-460 to 479 Total Audits

The Ultra Twin can give independent Totaliser Audits for each point of measurement when the Mode, (P1-100 or P2-100), selected is OCM Head or Flow. Parameters P1-460, P2-460 to P1-479, P2-479 show the date and daily flow total for the last ten days, the first on the list are the most recent and last ones are the oldest. When all ten total audits are full the oldest is pushed out and all totals increment through to allow the new days total to be registered in the first day's total audit parameter allocation.

## Important Information

In order to ensure the accuracy of Flow during a 24 -hour period, ensure that the Time P*932 is set correctly. And if required, enable Daylight Saving for the appropriate time difference $\mathbf{P} \boldsymbol{* 9 7 0} \mathbf{- P} \mathbf{~} \mathbf{9 7 9}$.

## P1-480, P2-480 Clear Logs

This parameter enables all the Total Audits (P1-460 to 479, P2-460 to 479) to be cleared to factory default values.

## Temperature

## P1 or P2

The following parameters give information on temperature conditions, for each point of measurement, as seen by the Temperature source (P1-852, P2852) in ${ }^{\circ} \mathrm{C}$. These parameters are read only and cannot be changed, though if P1-852, P2-852 are changed they will be reset.

## P1-580, P2-580 Minimum Temperature

This parameter displays the minimum temperature recorded.

## P1-581, P2-581 Minimum Temperature Date

This parameter displays the date when the minimum temperature was recorded.

P1-582, P2-582 Minimum Temperature Time
This parameter displays the time when the minimum temperature was recorded.

## P1-583, P2-583 Maximum Temperature

This parameter displays the maximum temperature recorded.

## P1-584, P2-584 Maximum Temperature Date

This parameter displays the date when the maximum temperature was recorded.

## P1-585, P2-585 Maximum Temperature Time

This parameter displays the time when the maximum temperature was recorded.

## P1-586, P2-586 Current Temperature

This parameter displays the current temperature.

## Pump Logs

## P1 and P2

## P*511 Pump 1 Hours

When Relay 1 is programmed as a Pump this parameter displays the current total running hours for Pump 1. Any value from 0-9999 can be entered to facilitate any update to the stored total for any reason e.g. a replacement pump being fitted.

## P*512 Pump 1 Starts

When Relay 1 is programmed as a Pump this parameter displays the current total pump starts for Pump 1. Any value from 0-9999 can be entered to facilitate any update to the stored total for any reason e.g. a replacement pump being fitted.

## P*513 Pump 1 Starts/Hour

When Relay 1 is programmed as a Pump this parameter displays the current pump Starts/Hour for Pump 1. Any value from 0-9999 can be entered to facilitate any update to the stored total for any reason e.g. a replacement pump being fitted.

## P*521 - P*523 Pump 2

When Relay 2 is programmed as a Pump, these parameters contain the same information as above for Pump 2.

## P*531 - P*533 Pump 3

When Relay 3 is programmed as a Pump These parameters contain the same information as above for Pump 3.

## P*541 - P*543 Pump 4

When Relay 4 is programmed as a Pump These parameters contain the same information as above for Pump 4.

## P*551 - P*553 Pump 5

When Relay 5 is programmed as a Pump These parameters contain the same information as above for Pump 5.

## P*561 - P*563 Pump 6

When Relay 6 is programmed as a Pump These parameters contain the same information as above for Pump 6.

## Volume

## When P1-100, P2-100 = 6 (Volume)

Your Ultra Twin provides a variety of volume calculation features, with 11 pre-programmed vessel shapes. See Vessel Shape (P1-600, P2-600) for more information. For each vessel you will need to know the dimensions (P1-601 to 603, P2-601 to 603) in Measurement Units $(\mathbf{P} * 104)$ which are required to calculate the volume (P1-604, P2-604) which will be displayed in the selected Volume Units (P1-605, P2-605).

If your vessel shape does not correspond with any of the pre-programmed vessel shapes, then you can use the universal calculations. For this you will need a level/volume graph or chart provided by the vessel manufacturer or you can create one based on the dimensions of the vessel. You can enter up to 32 pairs of breakpoints, and the more you enter, the greater accuracy of the volume calculation will be.

## Conversion

P1 or P2
P1-600, P2-600 Vessel Shape
This parameter determines which vessel shape is used when utilising "Volume Conversion".

The choices are as shown in the table below, along with the dimensions that are required to be entered ( $\mathbf{P 1 - 6 0 1}$ to 603, P2-601 to 603).

| P600 Value | Dimensions |
| :--- | :--- | :--- |
| P1-600, P2-600 = 0 <br> Cylindrical Flat base <br> Default) | Cylinder diameter |
| Rectangular Flat base |  |
| Ressel Shape |  | Width and Breadth


| Vessel Shape | P600 Value | Dimensions |
| :---: | :---: | :---: |
|  | $\mathrm{P} 1-600, \mathrm{P} 2-600=7$ <br> Rectangular Flat sloped base | Width and Breadth of rectangular section and height of bottom |
|  | P1-600, P2-600 = 8 Horizontal cylinder with flat ends | Cylinder diameter and tank length |
|  | $\mathrm{P} 1-600, \mathrm{P} 2-600=9$ <br> Horizontal cylinder with parabolic ends | Cylinder diameter, length of one end section, and tank length |
|  | $\text { P1-600, P2-600 = } 10$ <br> Sphere | Sphere diameter |
|  | $\text { P1-600, P2-600 }=11$ <br> Universal Linear | No dimensions required, level and volume breakpoints used. |
| 1 | P1-600, P2-600 =12 <br> Universal Curved | No dimensions required, level and volume breakpoints used. |

These three parameters are used to enter the dimension required to calculate the volume. The dimensions required are as shown below and are entered in Measurements Units ( $\mathbf{P}$ *104).

| Vessel Shape | $\begin{aligned} & \text { P1-601 } \\ & \text { P2-601 } \end{aligned}$ | $\begin{aligned} & \text { P1-602 } \\ & \text { P2-602 } \end{aligned}$ | $\begin{aligned} & \text { P1-603 } \\ & \text { P2-603 } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| P1-600, P2-600 $=0$ <br> Cylindrical Flat base | Cylinder Diameter | Not <br> Required | Not <br> Required |
| P1-600, P2-600 = 1 <br> Rectangular Flat base | Not <br> Required | Width of rectangle | Breadth of rectangle |
| $\text { P1-600, P2-600 }=2$ <br> Cylindrical Cone base | Height of base | Cylinder <br> Diameter | Not <br> Required |
| $\mathrm{P} 1-600, \mathrm{P} 2-600=3$ <br> Rectangular Pyramid base | Height of base | Width of rectangle | Breadth of rectangle |
| P1-600, P2-600 = 4 <br> Cylindrical Parabola base | Height of base | Cylinder <br> Diameter | Not <br> Required |
| $\mathrm{P} 1-600, \mathrm{P} 2-600=5$ <br> Cylindrical Half-sphere base | Cylinder Diameter | Not <br> Required | Not Required |
| P1-600, P2-600 = 6 <br> Cylindrical Flat sloped base | Height of base | Cylinder Diameter | Not <br> Required |
| P1-600, P2-600 = 7 <br> Rectangular Flat sloped base | Height of base | Width of rectangle | Breadth of rectangle |
| P1-600, P2-600 = 8 <br> Horiz. cylinder, flat ends | Length of Cylinder | Cylinder <br> Diameter | Not <br> Required |
| $\mathrm{P} 1-600, \mathrm{P} 2-600=9$ <br> Horiz. Cyl. parabolic ends | Length of Cylinder | Cylinder <br> Diameter | Length of one end |
| $\text { P1-600, P2-600 }=10$ <br> Sphere | Sphere Diameter | Not <br> Required | Not <br> Required |

## P1-604, P2-604 Calculated Volume

This parameter displays the maximum volume that has been calculated by the Ultra Twin and is a Read-Only parameter. The volume displayed will be shown in volume units ( $\mathbf{P 1} 1-605, \mathbf{P 2 - 6 0 5}$ ) and is the total volume available between empty level (P1-105, P2-105) and 100\% of span (P1-106, P2-106).

This parameter determines the units that you wish to display, for volume conversion. It is used in conjunction with P1-607, P2-607 (maximum volume), and the units are shown on the display (subject to P1-810, P2-810). The choices are:

| Option | Description |
| :--- | :--- |
| $0=$ No Units | Volume will be totalised with no units |
| $1=$ Tons | Volume will be totalised in Tons |
| $2=$ Tonnes | Voll be totalised in Tonnes |
| $\mathbf{3}=$ Cubic metres (Default) | Volume will be totalised in cubic metres |
| $4=$ Litres | Volume will be totalised in litres |
| $5=$ UK Gallons | Volume will be totalised in UK Gallons |
| $6=$ US Gallons | Volume will be totalised in US Gallons |
| $7=$ Cubic feet | Volume will be totalised in cubic feet |
| $8=$ Barrels | Volume will be totalised in barrels |
| $9=$ lbs (pounds) | Volume will be totalised in lbs (pounds) |

## P1-606, P2-606 Correction Factor

This parameter is used to enter a correction factor, when required, such as the specific gravity of the material so that the volume calculated is relative to the actual amount of material that can be contained between empty level (P1105, P2-105) and $100 \%$ of span (P1-106, P2-106). Default = 1

## P1-607, P2-607 Max Volume

This parameter displays the actual maximum volume that has been calculated by the Ultra Twin, i.e. P1-604, P2-604 Calculated Volume x P1-606, P2606 Correction Factor, and is a Read-Only parameter. The volume displayed will be shown in P1-605, P2-605 Volume Units and is the total volume available between empty level (P1-105, P2-105) and $100 \%$ of span (P1-106, P2-106).

## Breakpoints

P1 or P2

## P1-610 to 673, P2-610 to 673 Level/Volume Breakpoints

These parameters are used to create a profile of the vessel when P1-600, P2$\mathbf{6 0 0}=11$ (universal linear) or P1-600, $\mathbf{P 2 - 6 0 0}=12$ (universal curved). You should enter breakpoints in pairs, a reading for level and its corresponding volume. The more pairs you enter, the more accurate the profile will be. In the case of universal linear, then enter the level/volume at each of the points where the vessel changes shape. In the case of the universal curved, enter values around each arc tangent, as well as at the top and bottom.

You must enter at least two pairs, and you can enter up to 32 pairs.

## Universal Linear (P1-600, P2-600 =11)

This volume calculation creates a linear approximation of the level/volume relationship and works best if the vessel has sharp angles between each section.


You should enter a level/volume breakpoint for each place where the vessel changes direction, and numerous where the section is slightly curved (mostly linear, but has got a small arc). You can enter any number of pairs between 2 and 32 .

## Universal Curved (P1-600, P2-600 =12

This volume calculation creates a curved approximation of the level/volume relationship, and works best if the vessel is non-linear, and there are no sharp angles.


You should enter 2 level/volume breakpoints at the minimum and maximum levels, and several for each place where the vessel has got an arc. You can enter any number of pairs between 2 and 32 .

## Tables

P1 or P2

## P1-696, P2-696 Reset Breakpoints

This parameter allows the resetting, to the default value, of all previously set breakpoints (P1-610 to 673, P2-610 to 673), without having to access them individually. When it is necessary to reset or amend particular breakpoints this can be achieved by directly accessing the desired parameter (P1-610 to 673, P2-610 to 673) and changing as required.

## P1-697, P2-697 Number of Breakpoints Set

This parameter allows you to review the number of breakpoints that have been set, without the need to access each individual one in turn, this is a "Read Only" parameter and no values can be entered.

When P1-100, P2-100 = 4 (OCM Head) or 5 (OCM Flow)

## PMD Setup

P1 or P2

## P1-700, P2-700 Primary Measuring Device Type

This parameter is used to select the type of Primary Measuring Device and enable additional parameters required to calculate the flow of the Primary Measuring Device chosen (P1-701, P2-701). Options are as follows:
$0=\mathbf{O f f}$ (Default)
$1=$ Exponent
2 = BS3680 Flume
3 = BS3680 Weir
$4=$ Not Available
$5=$ Special
6 = Universal

## P701 Primary Measuring Device

Enter the Primary Measuring Device used.
If P1-700, P2-700 = 1 (Exponent)
Select from the following options:
1 = Suppressed Rectangular Weir
$2=$ Cipolletti (Trapezoidal) Weir
3 = Venturi Flume
4 = Parshall Flume
5 = Leopold Lagco Flume
$6=\mathrm{V}$ - notch Weir,
7 = Others
If P1-700, $\mathbf{P 2 - 7 0 0}=\mathbf{2}$ (BS 3680 Flume)
Select from the following options:
$1=$ Rectangular
$2=$ Rectangular with hump
$3=$ U-throated
$4=\mathrm{U}$-Throated with hump

## If P1-700, P2-700 = $\mathbf{3}$ (BS 3680 Weir)

Select from the following options:
$1=$ Rectangular
$2=\mathrm{V}$-Notch 90 degree (full $90^{\circ}$ )
$3=$ V-Notch 53 degree $8^{\prime}\left(\right.$ half $\left.90^{\circ}\right)$
$4=$ V-Notch 28 degree $4^{\prime}$ (quarter $90^{\circ}$ )
$5=$ Broad crested (Rectangular) Weir

$$
\text { If P1-700, P2-700 = } 5(\text { Special })
$$

Select from the following options:
1 = Palmer-Bowlus Flume
$2=$ H-Flume
$3=$ V-Notch angle (other than BS3680)
If P1-700, P2-700 = 6 (Universal)
Where the Primary Measuring device does not match any of the devices contained in the above categories then a universal volume calculation can be performed. A head Vs flow chart is used, to enter a number of Breakpoints for head and flowrate (P1-730 to 793, P2-730 to 793), which is either provided by the manufacturer or created based on the dimensions of the device.

Select from the following options:
1 = Universal Linear flow calculation
$2=$ Universal Curved flow calculation

## P1-702, P2-702 Calculation

Select the required calculation method, both will give the same answer, but the difference is the information required to complete the calculation. For ratiometric it is normally sufficient to know the maximum flow at the maximum head. Choose between:

1 = Absolute
2 = Ratiometric (Default)

This parameter is used to enter the distance, above empty, that represents zero head and flow. This feature is used in Primary Measuring Devices where the zero reference is at a higher level than the channel bottom, at the point of measure. Enter distance in Measurement Units P*104.

## P1-704, P2-704 Maximum Head

Enter the head value that represents maximum flow, enter in Measurement Units $P * 104$.

Note any change to the value of this parameter will be reflected in P1-106, P2-106 (Span) and vice versa.

## P1-705, P2-705 Maximum Flow

When P1-702, $\mathbf{P 2 - 7 0 2}=\mathbf{2}$ Ratiometric enter the flow rate value that occurs at maximum head (P1-704, P2-704), enter in volume units (P1-706, P2706) per time units ( $\mathbf{P 1} 1-707$, P2-707).

When P1-702, $\mathbf{P 2 - 7 0 2}=\mathbf{1}$ Absolute, and all relevant flow parameters have been entered, the maximum flow that occurs at maximum head P1-704, P2704 will be calculated, after the unit is returned to RUN mode, and displayed in this parameter in volume units (P1-706, P2-706) per time units (P1-707, P2-707).

## P1-706, P2-706 Volume Units

Select the Volume Units to be used to display and calculate the flow rate from the options below:

| Option | Description |
| :--- | :--- |
| 1= Litres (Default) | Flow will be calculated and displayed in Litres |
| 2= Cubic metres | Flow will be calculated and displayed in Metres ${ }^{\text {3 }}$ |
| 3= Cubic feet | Flow will be calculated and displayed in Feet $^{3}$ |
| 4= UK Gallons | Flow will be calculated and displayed in UK Galls. |
| 5= US Gallons | Flow will be calculated and displayed in US Galls. |
| 6= Mill. USG | Flow will be calculated and displayed in Millions <br> of US Galls. |

Select the Time Units to be used with the Volume Units to determine the desired flow rate from the options below:

| Option | Description |
| :--- | :--- |
| 1 = per Second (Default) | Flowrate will be calculated and displayed in <br> Volume units/Second |
| 2 = per Minute | Flowrate will be calculated and displayed in <br> Volume units/Minute |
| 3 = per Hour | Flowrate will be calculated and displayed in <br> Volume units/Hour |
| 4= per Day | Flowrate will be calculated and displayed in <br> Volume units/Day |

## P1-708, P2-708 Flow Decimal

This parameter determines the number of decimal places in the flow rate reading during run mode. It can be set between 1 and 3 . Default $=\mathbf{2}$

## P1-709, P2-709 Flow Cut Off

This parameter is used to select the minimum flow, in a \% of flow rate, which is to be totalised. Enter values in \% of maximum flow. Default $=\mathbf{5 \%}$.

## Dimensions

## P1 or P2

## P1-710, P2-710 Dimension A

This parameter is used to enter dimension "A" of the Primary Measuring Device, where applicable, see table below for further details.

## P1-711, P2-711 Dimension B

This parameter is used to enter to enter dimension " B " of the Primary Measuring Device, where applicable, see table below for further details.

## P1-712, P2-712 Dimension C

This parameter is used to enter to enter dimension "C" of the Primary Measuring Device, where applicable, see table below for further details.

## P1-713, P2713 Dimension D

This parameter is used to enter to enter dimension "D" of the Primary Measuring Device, where applicable, see table below for further details.

| Primary Measuring Device P* = P1 and P2 | $\begin{gathered} \text { P1-710 } \\ \text { P2-710 } \\ \text { Dim "A" } \end{gathered}$ | $\begin{gathered} \text { P1-711 } \\ \text { P2-711 } \\ \text { Dim"B" } \end{gathered}$ | $\begin{gathered} \text { P1-712 } \\ \text { P2-712 } \\ \text { Dim "C" } \end{gathered}$ | $\begin{gathered} \text { P1-713 } \\ \text { P2-713 } \\ \text { Dim "D" } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{P}^{*}-700=1 \text { Exponent } \\ & \mathrm{P}^{*}-701=1 \text { Supp. Rectangular Weir } \\ & \mathrm{P}^{*}-702=1 \text { Absolute } \end{aligned}$ | Crest <br> Width | Not <br> Required | Not <br> Required | Not <br> Required |
| $\begin{aligned} & \text { P*-700 }=1 \text { Exponent } \\ & \mathrm{P}^{*}-701=2 \text { Trapezoidal Weir } \\ & \mathrm{P}^{*}-702=1 \text { Absolute } \end{aligned}$ | Crest <br> Width | Not <br> Required | Not <br> Required | Not <br> Required |
| $\begin{aligned} & \mathrm{P}^{*}-700=1 \text { Exponent } \\ & \mathrm{P}^{*}-701=5 \text { Leopold Lagco Flume } \\ & \mathrm{P}^{*}-702=1 \text { Absolute } \end{aligned}$ | Throat Diameter | Not <br> Required | Not Required | Not <br> Required |
| $\begin{aligned} & \mathrm{P}^{*}-700=1 \text { Exponent } \\ & \mathrm{P}^{*}-701=6 \text { V-Notch } \\ & \mathrm{P}^{*}-702=1 \text { Absolute } \end{aligned}$ | V-Notch <br> Angle | Not <br> Required | Not <br> Required | Not <br> Required |
| $\begin{aligned} & \mathrm{P}^{*}-700=2 \text { BS } 3680 \text { Flume } \\ & \mathrm{P}^{*}-701=2 \text { Rectangular } \\ & \mathrm{P}^{*}-702=\text { Absolute or Ratiometric } \end{aligned}$ | Approach Width | Throat Width | Throat Length | Not <br> Required |
| $\begin{aligned} & \mathrm{P}^{*}-700=2 \text { BS } 3680 \text { Flume } \\ & \mathrm{P}^{*}-701=2 \text { Rectangular with hump } \\ & \mathrm{P}^{*}-702=\text { Absolute or Ratiometric } \end{aligned}$ | Approach Width | Throat Width | Throat Length | Hump height |
| $\begin{aligned} & \mathrm{P}^{*}-700=2 \text { BS } 3680 \text { Flume } \\ & \mathrm{P}^{*}-701=3 \text { U-Throated } \\ & \mathrm{P}^{*}-702=\text { Absolute or Ratiometric } \end{aligned}$ | Approach Width | Throat Width | Throat Length | Not <br> Required |
| $\begin{aligned} & \mathrm{P}^{*}-700=2 \text { BS } 3680 \text { Flume } \\ & \mathrm{P}^{*}-701=4 \text { U-Throated with hump } \\ & \mathrm{P}^{*}-702=\text { Absolute or Ratiometric } \end{aligned}$ | Approach Width | Throat Width | Throat <br> Length | Hump Height |
| $\begin{aligned} & \mathrm{P}^{*}-700=3 \text { BS } 3680 \text { Weir } \\ & \mathrm{P}^{*}-701=1 \text { Rectangular } \\ & \mathrm{P}^{*}-702=\text { Absolute or Ratiometric } \end{aligned}$ | Approach Width | Crest <br> Width | Crest <br> Height | Not <br> Required |
| $\begin{aligned} & \mathrm{P}^{*}-700=5 \text { Special } \\ & \mathrm{P}^{*}-701=2 \text { H-Flume } \\ & \mathrm{P}^{*}-702=\text { Absolute or Ratiometric } \end{aligned}$ | Flume Size | Not <br> Required | Not <br> Required | Not <br> Required |
| $\begin{aligned} & \mathrm{P}^{*}-700=5 \text { Special } \\ & \mathrm{P}^{*}-701=3 \text { V-Notch angle } \\ & \mathrm{P}^{*}-702=\text { Absolute or Ratiometric } \end{aligned}$ | V-Notch Angle | Not <br> Required | Not <br> Required | Not <br> Required |

When P1-700, $\mathrm{P} 2-700=2$, BS3680 Flume this parameter is used to enter the roughness coefficient of the flume in millimetres, see table below for further details.

|  | Value of Ks |  |
| :---: | :---: | :---: |
| Surface Classification | $\begin{gathered} \text { Good } \\ \text { Example } \\ \text { mm } \end{gathered}$ | $\begin{gathered} \text { Normal } \\ \text { Value } \\ \text { mm } \end{gathered}$ |
| Plastics, etc. <br> Perspex, PVC or other smooth faced <br> Asbestos cement <br> Resin-bonded glass-fibre moulded against smooth forms of sheet metal or well sanded and painted timber | 0.03 | $\begin{aligned} & 0.003 \\ & 0.015 \\ & 0.06 \end{aligned}$ |
| Metal <br> Smooth, machined and polished metal <br> Uncoated sheet metal, rust free <br> Painted metal <br> Galvanized metal <br> Painted or coated casting <br> Uncoated casting | $\begin{aligned} & 0.003 \\ & 0.015 \\ & 0.03 \\ & 0.06 \\ & 0.06 \\ & 0.15 \end{aligned}$ | 0.006 0.03 0.06 0.15 0.15 0.3 |
| Concrete <br> In-situ or precast construction using steel formwork, with all irregularities rubbed down or filled in In-situ or precast construction using plywood or wrought timber framework <br> Smooth trowelled cement rendering Concrete with thin film of sewage slime | $\begin{aligned} & 0.06 \\ & \\ & 0.3 \\ & 0.3 \\ & 0.6 \end{aligned}$ | $\begin{aligned} & 0.15 \\ & \\ & 0.6 \\ & 0.6 \\ & 1.5 \end{aligned}$ |
| Wood <br> Planned timber or plywood Well sanded and painted | $\begin{aligned} & 0.3 \\ & 0.03 \end{aligned}$ | $\begin{aligned} & 0.6 \\ & 0.06 \end{aligned}$ |

## P1-715, P2-715 Water Temperature

When P1-700, $\mathrm{P} 2-700=2$, BS3680 Flume this parameter is used to enter the mean water temperature in ${ }^{\circ} \mathrm{C}$.

## P1-717, P2-717 Exponent

This parameter is used to enter the exponent value when:
P1-700, P2-700 PMD Type $=1$ (Exponent) and P1-701, P2-701 Primary M.D $=7$ (Other).

## P1-718, P2-718 K Factor

This parameter is used to enter the K Factor when:
P1-700, P2-700 PMD Type $=1$ (Exponent) and P1-702, P2-702 Calculation $=1$ Absolute see below table for further details.

| Primary Measuring Device <br> P* $=$ P1 and P2 | K-Factor |
| :--- | :---: |
| P Automatically |  |
| $\mathrm{P}^{*}-700=1$ Exponent $=1$ Supp. Rectangular Weir | Calculated |
| $\mathrm{P}^{*}-700=1$ Exponent | Automatically |
| $\mathrm{P}^{*}-701=2$ Trapezoidal Weir | Calculated |
| $\mathrm{P}^{*}-700=1$ Exponent | Obtain value |
| $\mathrm{P}^{*}-701=3$ Venturi Flume | and enter |
| $\mathrm{P}^{*}-700=1$ Exponent | Automatically |
| $\mathrm{P}^{*}-701=4$ Parshall Flume | Calculated |
| $\mathrm{P}^{*}-700=1$ Exponent | Automatically |
| $\mathrm{P}^{*}-701=5$ Leopold Lagco Flume | Calculated |
| $\mathrm{P}^{*}-700=$ Exponent | Automatically |
| $\mathrm{P}^{*}-701=6$ V-Notch | Calculated |
| $\mathrm{P}^{*}-700=1$ Exponent | Obtain value |
| $\mathrm{P}^{*}-701=7$ Other | And enter |

## P1-719, P2-719 Throat Width

This parameter is used to select the Throat Width of the flume when: P1-700, P2-700 PMD Type $=1$ (Exponent) and P1-701, P2-701 $=4$ (Parshall Flume). After selecting the Throat Width, the Exponent P1-717, P2-717 and K Factor P1-718, P2-718 will be set automatically.

## Calculations

## P1 or P2

The following parameters P1-720 to 725, P2-720 to 725 are values calculated by the unit, dependent on application, and are "Read Only", therefore have no default values.

## P1-720, P2-720 Area

Displays the calculated value of the area when, P1-700, P2-700 $=2(\mathrm{BS} 3690$ flumes).

P1-721, P2-721 Cv
Displays the calculated value for Cv when, $\mathrm{P} 1-700, \mathrm{P} 2-700=2(\mathrm{BS} 3680$ flumes).

P1-722, P2-722 Cd
Displays the calculated value for Cd when, $\mathrm{P} 1-700, \mathrm{P} 2-700=2(\mathrm{BS} 3680$ flumes).

## P1-723, P2-723 Ce

Displays the calculated value for Ce when, $\mathrm{P} 1-700, \mathrm{P} 2-700=3(\mathrm{BS} 3680$ weirs).

## P1-724, P2-724 Cu

Displays the calculated value for Cu when, $\mathrm{P} 1-700, \mathrm{P} 2-700=2(\mathrm{BS} 3680$ flume) and P1-701, P2-701 $=3$ or 4 (U-Throated flume).

## P1-725, P2-725 Kb

Displays the calculated value for Kb when, $\mathrm{P} 1-700, \mathrm{P} 2-700=3(\mathrm{BS} 3680$ weirs) and P1-701, P2-701 $=1$ (Rectangular weir).

## Breakpoints

## P1 or P2

## P1-730 to P1-793, P2-730 to P2-793 Breakpoints

Where the Primary Measuring device does not match any of the preprogrammed devices contained in the Ultra Twin, then a universal volume calculation can be performed. A head Vs flow chart is used, to enter a number of Breakpoints for the head and flow (P1-730 to 793, P2-730 to 793), which is either provided by the manufacturer or created based on the dimensions of the device.

Breakpoints should be entered in pairs of head and the corresponding flow for that head. The first pair entered must be for zero head and flow and the last pair entered must be for maximum head and flow. The higher number of breakpoints (pairs) entered then the greater accuracy there will be. There are a maximum number of 32 breakpoints (pairs) for head and flow that can be entered.

## Tables

## P1 and P2

## P1-796, P2-796 Reset Breakpoints

This parameter allows the resetting, to the default value, of all previously set breakpoints (P1-730 to 793, P2-730 to 793), without having to access them individually. When it is necessary to reset or amend particular breakpoints this can be achieved by directly accessing the desired parameter (P1-730 to 793, P2-730 to 793) and changing as required.

## P1-797, P2-797 Number of Breakpoints Set

This parameter allows you to review the number of breakpoints that have been set, without the need to access each individual one in turn, this is a "Read Only "parameter and no values can be entered.

## Average Flow

## P1 or P2

## P1-863, P2-863 Average Flow

This parameter will display the Average Flow for the time period set in Average Time ( $\mathbf{P 1 - 8 6 4 , ~ P 2 - 8 6 4 ) . ~ I t ~ i s ~ r e a d ~ o n l y ~ a n d ~ c a n n o t ~ b e ~ c h a n g e d . ~}$

## P1-864, P2-864 Average Time

This parameter will set the time period over which the Average Flow (P1-863, $\mathrm{P} 2-863$ ) is to be calculated before being displayed.

## Display Parameters

## Options

P1 or P2

## P1-800, P2-800 Display Units

This parameter determines whether the reading displayed is in Measurement Units ( $P * 104$ ), or as a percentage of span.

| Option | Description |
| :--- | :--- |
| $\mathbf{1}=$ Measured (Default) | Display is in selected units dependant on <br> Mode (P1-100, P2-100) |
| $2=$ Percentage | Display is in percentage of span dependant <br> on Mode (P1-100, P2-100). |

## P1-801, P2-801 Decimal Places

This parameter determines the number of decimal places on the reading during run mode.
Minimum $=0$ (No decimal places), Maximum $3=(3$ decimal Places $)$
Default $=\mathbf{2}$ (2 decimal Places)

## P1-802, P2-802 Display Offset

The value of this parameter is added to the reading before it is displayed, in Measurement Units ( $\mathbf{P * 1 0 4 ) .}$

It does not affect the relay setpoints or the mA output, only the reading on the display.
You could use this feature if for example you wanted to reference the reading to sea level, where you would enter the distance between Empty Level ( $\mathbf{P 1 - 1 0 5}, \mathbf{P 2 - 1 0 5}$ ) and sea level. If the empty level point is below sea level, then enter a negative value.

## P1-804, P2-804 Display Conversion

The reading is multiplied by the value of this parameter before being displayed. The default is 1.0 , but if for example you wanted to display the reading in yards, then set the Measurement Units ( $\mathbf{P * 1 0 4}$ ) to feet, and set P1-804, P2-804 to 3.

## P1-805, P2-805 Display Source

This parameter determines which point(s) of measurement the display will relate to.

| Option | Description |
| :--- | :--- |
| 1= Point 1 | Displays Point 1 calculated values in chosen <br> Measurement Units. |
| 2= Point 2 | Displays Point 2 calculated values in chosen <br> Measurement Units. |
| $3=$ Avg. 1 \& 2 | Displays calculated average values of Point 1 \& 2 <br> in chosen Measurement Units. |
| $4=$ Sum 1+2 | Displays calculated sum values of Point 1 + 2 in <br> chosen Measurement Units. |
| 5 = Diff. 1-2 | Displays calculated differential values of Point <br> $\mathbf{1 - 2}$ in chosen Measurement Units. |

Important Information
When the display is to be used to show the value of the average, differential or sum of two points of measurement, then both points must be set to the same units of measurement. In the case of flow (P1-100 and P2-100 are set for $\mathbf{4}$ (OCM Head) or 5 (OCM Flow), then P1-706, P2-706 (Volume Units) \& P1707, P2-707 (Time Units) must be the same. In case the of Volume then P1-100 and P2-100 are set for 6 (Volume) then P1- 605, P2-605 (Volume Units) must be the same.

## Failsafe

## P1 or P2

## P1-808, P2-808 Fail-safe Mode

By default, if a fail-safe condition occurs, then the display, relays and the mA output are held at their last known values until a valid reading is obtained.

If required, then you can change this so that the unit goes to high ( $100 \%$ of span), or low (empty) as follows:

| Option | Description |
| :--- | :--- |
| $\mathbf{1}=$ Known (Default) | Remain at the last known value |
| $2=$ High | Will fail to the high value (100\% of Span). |
| $3=$ Low | Will fail to the low value (empty) |

- See Also P*218, $P^{*} 228, P^{*} 238, P^{*} 248, P^{*} 258, P^{*} 268$ - Relay Fail-safe and $P^{*} 840-m A 1$ Output Fail-safe and P*898-mA 2 Fail-safe.


## Important Information

In the event of a fail-safe condition occurring, the displays, relays and mA Outputs can be configured to fail to a condition which is independent of each other. To set independent Relay Failsafe see $\mathbf{P}$ *218, $\mathbf{P}$ *228, $\mathbf{P}$ *238, $\mathbf{P} * \mathbf{2 4 8}, \mathbf{P} * \mathbf{2 5 8}, \mathbf{P} * \mathbf{2 6 8}$. For independent mA 1 Output Failsafe see $\mathbf{P} * \mathbf{8 4 0}$ and mA 2 Output Failsafe see $\mathbf{P * 8 9 8}$.

## P1-809, P2-809 Fail-safe Time

In the event of a fail-safe condition the fail-safe timer determines the time before fail-safe mode is activated. Default = 2mins

If the timer activates, the unit goes into fail-safe, as determined by $\mathbf{P 1 - 8 0 8}$, P2-808 (Display), $\mathbf{P} * 218,228,238,248,258,268$ (Relays), $\mathbf{P} * 840$ (mA 1 Output) and $\mathbf{P} * \mathbf{8 9 8}$ (mA 2 Output). When this happens, you will see the message "Failed Safe!" on the display, along with a message explaining why (lost echo or transducer fault, for example)

When a valid measurement is obtained then the display(s), relays and mA output(s) will be restored and the timer is reset.

## Auxiliary

P1 or P2

## P1-810, P2-810 Units

This parameter determines whether the selected units of measurement are displayed on the auxiliary line of the display in run mode.

| Option | Description |
| :--- | :--- |
| $0=$ No | Measurement units will not be displayed |
| $\mathbf{1}=$ Yes (Default) | Measurement units will be displayed |

## P1-811, P2-811 Alarms Messages

This parameter determines whether notification messages are displayed on the auxiliary line of the display in run mode when an alarm relay is switched on or off. The message is in the form "Alarm High ON", where the 'High' is determined by the setting of the relay Alarm ID ( $\mathbf{P} * \mathbf{2 1 2}, \mathbf{2 2 2}, \mathbf{2 3 2}, \mathbf{2 4 2}, \mathbf{2 5 2}$, 262).

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=\mathbf{N o}$ (Default) | Alarm messages will not be displayed |
| $1=$ Yes | Alarm messages will be displayed |

## P1-812, P2-812 Pump Messages

This parameter determines whether notification messages are displayed on the auxiliary line of the display in run mode when a pump relay is switched on or off. The message is in the form "General 1 ON", where the number displayed is the number of the relay.

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ No (Default) | Pump messages will not be displayed |
| $1=$ Yes | Pump messages will be displayed |

## P1-813, P2-813 Control Messages

This parameter determines whether notification messages are displayed on the auxiliary line of the display in run mode when a control relay is switched on or off. The message is in the form "Time ON".

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ No (Default) | Control messages will not be displayed |
| $1=$ Yes | Control messages will be displayed |

## P1-814, P2-814 Miscellaneous Messages

This parameter determines whether notification messages are displayed on the auxiliary line of the display in run mode when a miscellaneous relay is switched on or off. The message is in the form "Clock ON".

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ No (Default) | Misc. messages will not be displayed |
| $1=$ Yes | Misc. messages will be displayed |

## P1-815, P2-815 Auxiliary Mode

The auxiliary display can be used to give additional information on calculated values of a point(s) of measurement, as determined by P1-816, P2-816 Auxiliary Source.

The information available to be displayed will be dependent on the selected Mode P1-100, P2-100, and the options are as follows:

| Option | Description |
| :--- | :--- |
| $1=$ Distance | Values related to distance will be displayed. |
| $\mathbf{2}=$ Level (Default) | Values related to level will be displayed. |
| $3=$ Space | Values related to space will be displayed. |
| $4=$ Head | Values related to head will be displayed. |
| $5=$ Flow | Values related to flow will be displayed. |
| $6=$ Volume | Values related to volume will be displayed. |
| $7=$ Totaliser (R) | Values related to totaliser(s) will be displayed. |

## P1-816, P2-816 Auxiliary Source

This parameter determines which point or points of measurement, dependent on the selected Mode ( $\mathbf{P 1} \mathbf{- 1 0 0}$ and $\mathbf{P 2 - 1 0 0}$ ), that the auxiliary display will relate to and the options are as follows:

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Off (Default) | Auxiliary display not used to display values |
| $1=$ Point 1 | Displays Point 1 calculated values. |
| $2=$ Point 2 | Displays Point 2 calculated values. |
| $3=$ Avg. $1 \& 2$ | Displays calculated average values of Point 1 \& 2. |
| $4=$ Sum $1+2$ | Displays calculated sum values of Point 1 + 2. |
| $5=$ Diff. $1-2$ | Displays calculated differential values of Point 1-2. |

## Important Information

When the auxiliary display is to be used to show the value of the average, differential or sum of two points of measurement, then both points must be set to the same units of measurement. In the case of flow P1-100 and P2-100 are set for 4 (OCM Head) or 5 (OCM Flow), then P1-706, P2-706 (Volume Units) \& P1-707, P2-707 (Time Units) must be the same. And in case the of Volume then P1-100 and P2-100 are set for 6 (Volume) then P1- 605, P2-605 (Volume Units) must be the same.

## When P1-815, P2-815 = 7 (Totaliser(R))

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=\mathbf{O f f}$ (Default) | Auxiliary display not used to display values |
| $1=$ Totaliser 1 (R) | Displays Totaliser 1 (R) in auxiliary display. |
| $2=$ Totaliser 2 (R) | Displays Totaliser 2 (R) in auxiliary display. |

When a resettable totaliser (Totaliser (R)) is selected to be displayed, the auxiliary display will scroll between the resettable totaliser and the relevant totaliser units.

The resettable totaliser can be reset whilst in run mode via the "Totaliser" hot key $\Sigma$ by pressing " 0 " whilst $\operatorname{Total}(\mathrm{R})$ is displayed.

## Totaliser

## P1 or P2

The Ultra Twin has two totalisers which can be used to record and totalise flow, by default totaliser 1 (P1-820) will be allocated to point 1 and totaliser 2 (P2-820) to point 2, but when both points of measurement are being used to calculate OCM Head or OCM Flow (P1-100 and P2-100 $=4$ or 5) either totaliser can be allocated the average of point $1 \& 2$, or the sum of $1+2$. Both totalisers have an associated resettable totaliser P1-821 Totaliser 1 (R) and P2-821 Totaliser $2(\mathrm{R})$ which can be displayed on the auxiliary display and reset whilst in run mode, with its mode of operation being determined by the Totaliser Mode P1-824, P2-824.

Displays the current value of the non-resettable totaliser(s). During run mode, these totalisers can be viewed via the "Totaliser" hot key $\Sigma$. Unlike the resettable totaliser these totalisers cannot be reset whilst in run mode, it can however be reset whilst in program mode by accessing P1-820 Totaliser 1, P2-820 Totaliser 2 and entering zero.

## P1-821, P2-821 Totaliser (R )1\&2

Displays the current value of the resettable totaliser(s), these totalisers can be allocated to appear, during run mode, on the auxiliary display line (P1-816, P2-816) or alternatively accessed via the "Totaliser" hot key $\Sigma$.

## P1-822, P2-822 Totaliser Decimal Places

This parameter determines the number of decimal places in the totaliser(s) during run mode. It can be set between 1 and 3. Default $=\mathbf{2}$

## P1-823, P2-823 Totaliser Multiplication Factor

Use this parameter if the totaliser increments by to large or small amount, enter the factor by which the actual flow rate is multiplied by before incrementing the totaliser.
E.g. if volume is being calculated and displayed in ltrs and it is desired to increment the totaliser in cubic metres select $7=* 1000$.
When viewing, the totaliser display will state, "Units are: L*1000", and the totaliser will be incremented every 1000 litres

Options are:

| Option | Description |
| :--- | :--- |
| $1=1 / 1000$ | Totaliser will increment every $1 / 1000^{\text {th }}$ units of volume |
| $2=1 / 100$ | Totaliser will increment every $1 / 100^{\text {th }}$ units of volume |
| $3=1 / 10$ | Totaliser will increment every $1 / 10^{\text {th }}$ units of volume |
| $\mathbf{4 = 1}$ (Default) | Totaliser will increment every 1 units of volume |
| $5=10$ | Totaliser will increment every 10 units of volume |
| $6=100$ | Totaliser will increment every 100 units of volume |
| $7=1,000$ | Totaliser will increment every 1000 units of volume |
| $8=10,000$ | Totaliser will increment every 10,000 units of volume |
| $9=100,000$ | Totaliser will increment every 100,000 units of volume |
| $10=1,000,000$ | Totaliser will increment every $1,000,000$ units of volume |

This parameter determines which point(s) of measurement the totaliser(s) will react to.

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Off (Default) | Totaliser will be disabled |
| 1 = Point 1 (P1-824) | Totaliser 1 allocated to Point 1 |
| $2=$ Point 2 (P2-824) | Totaliser 2 allocated to Point 2 |
| $3=$ Avg. 1 \& 2 | Totaliser allocated to Average flow of Point 1 |
| $4=$ Sum 1 + 2 | Totaliser allocated to Sum flow of Point 1 + 2 |

## Important Information

When the totaliser is to be used to totalise the average or sum of two points of flow measurement, then both points must be set to the same units of measurement i.e. P1-100 and P2-100 are set for $\mathbf{4}$ (OCM Head) or 5 (OCM Flow), then P1-706, P2-706 (Volume Units) \& P1-707, P2-707 (Time Units) must be the same, also the totalisers must have the same multiplication factor applied, P1-823, P2-823 (Total. Multi).

## Bargraph

## P1 or P2

## P1-829, P2-829 Bargraph

By default, the bar graph will be representative of the level being measured, as a percentage of the Span P1-106, $\mathbf{P 2 - 1 0 6}$. This parameter is automatically set to the correct default option when selecting the Mode P1-100, P2-100 but can be changed if required.

The options, dependant on the value entered for Mode P1-100, P2-100 are as follows:

P1-100, P2-100 = 1 (Distance), 2 (Level) or 3 (Space)

| Option | Description |
| :---: | :--- |
| $\mathbf{2}=$ Level (Default) | Bargraph will be representative of level. |

## P1-100, P2-100 = 4 (OCM Head) or 5 (OCM Flow)

| Option | Description |
| :--- | :--- |
| $\mathbf{2}=$ Level (Default) | Bargraph will be representative of level. |
| $4=$ Head | Bargraph will be representative of head. |
| $5=$ Flow | Bargraph will be representative of flow. |

P1-100, P2-100 = 6 (Volume)

| Option | Description |
| :--- | :--- |
| $\mathbf{2}=$ Level (Default) | Bargraph will be representative of level. |
| $6=$ Volume | Bargraph will be representative of volume. |

## mA Output 1 Parameters

## Range

## P1 and P2

## P*830 mA1 Range

This parameter determines the range of the mA output, from the following.

| Option | Description |
| :---: | :---: |
| $0=$ Off | mA output disabled. |
| $1=0$ to 20 mA | mA output directly proportional to the $\mathbf{m A}$ mode $(\mathbf{P} * \mathbf{8 3 1})$, so if the reading is $0 \%$ then the mA output is 0 mA . If the reading is $100 \%$ then the mA output is 20 mA . |
| $\begin{aligned} & \text { 2=4 to } 20 \mathrm{~mA} \\ & \text { (Default) } \end{aligned}$ | mA output directly proportional to the $\mathbf{m A}$ mode $(\mathrm{P} * \mathbf{8 3 1})$, so if the reading is $0 \%$ then the mA output is 4 mA . If the reading is $100 \%$ then the mA output is 20 mA . |
| $3=20$ to 0 mA | mA output inversely proportional to the $\mathbf{m A}$ mode $(\mathbf{P} * \mathbf{8 3 1})$, so if the reading is $0 \%$ then the mA output is 20 mA . If the reading is $100 \%$ then the mA output is 0 mA . |
| $4=20$ to 4 mA | mA output inversely proportional to the $\mathbf{m A}$ mode $(\mathrm{P} * \mathbf{8 3 1})$, so if the reading is $0 \%$ then the mA output is 20 mA . If the reading is $100 \%$ then the mA output is 4 mA . |

## Operation

P1 and P2

## P*831 mA1 Mode

This parameter determines how the ma Output relates to what is measured. By default, it will be representative of the selected Mode (P1-100), but, dependant on the Mode P1-100 it can be set to operate as follows:

P1-100 = 1 (Distance), 2 (Level) or 3 (Space)

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | mA output relative to Mode P1-100 |
| $1=$ Distance | mA output relative to distance. |
| $2=$ Level | mA output relative to level. |
| $3=$ Space | mA output is relative to space. |

P1-100 = 4 (OCM Head) or 5 (OCM Flow)

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | mA output relative to Mode P1-100 |
| $1=$ Distance | mA output relative to distance. |
| $2=$ Level | mA output relative to level. |
| $3=$ Space | mA output is relative to space. |
| $4=$ OCM Head | mA output is relative to OCM Head |
| $5=$ OCM Flow | mA output is relative to OCM Flow |

P1-100 = 6 (Volume)

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | mA output relative to Mode P1-100 |
| $1=$ Distance | mA output relative to distance. |
| $2=$ Level | mA output relative to level. |
| $3=$ Space | mA output is relative to space. |
| $6=$ Volume | mA output is relative to volume |

## Setpoint

## P1 and P2

By default, the mA output will represent the empty ( $\mathbf{0}$ or $\mathbf{4 m A}$ ) dependant on $\mathbf{P} * 830(m A$ Range) and $\mathbf{1 0 0 \%}$ of the operational span $(\mathbf{2 0 m A})$, but you may wish to have the output represent a section of the operational span. For example, the application has an operational span of 6 metres but output is to represent empty ( 0 or $\mathbf{4 m A}$ ) dependant on $P * 830$ (mA Range) to a level of 5 metres ( $\mathbf{2 0 m A}$ ). If so $\mathbf{P} * 834$ (Low Value) should be set to 0.00 metres and $\mathbf{P} * 835$ (High Value) should be set to 5 metres.

## P*834 mA1 Low Value

This parameter sets, in Measurement Units ( $\mathbf{P} * 104$ ), the value of 'level', 'distance' or 'space', depending on the selected mA Out Mode ( $\mathbf{P * 8 3 1 )}$ at which the low mA output will occur ( $\mathbf{0}$ or $\mathbf{4 m A}$ dependant on $(\mathbf{P} * \mathbf{8 3 0}) \mathbf{m A}$ Range)
Default $=\mathbf{0 . 0 0 0} \mathrm{m}$

## P*835 mA1 High Value

This parameter sets, in Measurement Units ( $\mathbf{P} * 104$ ), the value of 'level', 'distance' or 'space', depending on the selected mA Out Mode ( $\mathbf{P} * \mathbf{8 3 1}$ ) at which the high mA output will occur ( $\mathbf{2 0 m A}$ ).
Default $=\mathbf{6 . 0 0 0} \mathbf{m}$

## Limits

## P1 and P2

## P*836 mA1 Low Limit

This parameter sets the lowest value that the mA output will drop to, the default is 0 mA , but you can override this if the device you connect to cannot for example accept less than 2 mA , yet you want to use the $0-20 \mathrm{~mA}$ range. Default $=\mathbf{0 . 0 0} \mathbf{m A}$

## P*837 mA1 High Limit

This parameter sets the highest value that the mA output will rise to, the default is 20 mA , but you can override this if the device you connect to cannot for example accept more than 18 mA , yet you want to use the $0-20 \mathrm{~mA}$ range. Default $=\mathbf{2 0 . 0 0} \mathbf{m A}$

## Trim

## P1 and P2

## P*838 mA1 Low Trim

If the remote device you are connected to is not calibrated, and not showing the correct low value (reading), then you can trim it using this parameter. You can either type in the offset directly or use the arrow keys to move the output up and down until you get the expected result (reading) on the remote device that is connected.

## P*839 mA1 High Trim

If the remote device you are connected to is not calibrated, and not showing the correct high value (reading), then you can trim it using this parameter. You can either type in the offset directly or use the arrow keys to move the output up and down until you get the expected result (reading) on the remote device that is connected.

## Failsafe

## P1 and P2

## P*840 mA1 Fail-safe Mode

This parameter determines what happens to the mA output in the event of the unit going into fail-safe mode. The default is to do the same as the system fail-safe (P1-808), but this can be overridden to force the mA output to an independent fail-safe mode as follows:

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | mA output will fail as per P1-808. |
| $1=$ Hold | mA output will retain its last known value. |
| $2=$ Low | mA output will fail to its low condition. |
| $3=$ High | mA output will fail to its high condition. |

## Allocation

## P1 and P2

## P*841 mA1 Allocation

By default, the mA output 1 will be representative of the reading obtained, as determined by the Mode P1-100.

If required, mA output 1 can be configured to be representative of the average, difference or sum of two points of measurement.
E.g. Both P1-100 and P2-100 = 5 OCM Flow then mA Output 1 can be configured to give an output representative of flow on point 1 or flow on point 2 or the average flow of the two points or the sum of the flow for both points.

The options available are as follows:

| Option | Description |
| :--- | :--- |
| 1= Point 1 (Default) | mA 1 Output relates to Point 1. |
| 2= Point 2 | mA 1 Output relates to Point 2. |
| 3 = Avg. $1 \& 2$ | mA 1 Output relates to average of Pt 1 \& Pt2. |
| 4= Sum $1+2$ | mA 1 Output relates to differential of Pt 1 \& Pt2. |
| 5= Diff. $1-2$ | mA 1 Output relates to sum of Pt $\mathbf{1}$ \& Pt2. |

## Important Information

When mA Output 1 is to be representative of the average or sum of two points of measurement, then both points must be set to the same units of measurement. In the case of flow P1-100 and P2-100 are set for $\mathbf{4}$ (OCM Head) or 5 (OCM Flow), then P1-706, P2-706 (Volume Units) \& P1-707, P2-707 (Time Units) must be the same. And in the case of Volume then P1-100 and P2-100 are set for $\mathbf{6}$ (Volume) then P1-605, P2-605 (Volume Units) must be the same.

Important Information
When both mA Output 1 and mA Output 2 are allocated to the same point of measurement, for them to output the same reading, both $\mathbf{m A}$ low value (P834/P892) and mA high value ( $\mathbf{P 8 3 5} / \mathbf{P 8 9 3}$ ) must be the same for each mA Output.

## Range

## P1 and P2

## P*890 mA2 Range

This parameter determines the range of the mA output, from the following.

| Option | Description |
| :---: | :---: |
| $0=$ Off | mA output disabled. |
| $1=0$ to 20 mA | mA output directly proportional to the $\mathbf{m A}$ mode $(\mathbf{P} * \mathbf{8 9 1})$, so if the reading is $0 \%$ then the mA output is 0 mA . If the reading is $100 \%$ then the mA output is 20 mA . |
| $\begin{aligned} & \begin{array}{l} 2=4 \text { to } 20 \mathrm{~mA} \\ \text { (Default) } \end{array} \end{aligned}$ | mA output directly proportional to the $\mathbf{m A}$ mode $(\mathbf{P} * \mathbf{8 9 1})$, so if the reading is $0 \%$ then the mA output is 4 mA . If the reading is $100 \%$ then the mA output is 20 mA . |
| $3=20$ to 0 mA | mA output inversely proportional to the $\mathbf{m A}$ mode $(P * 891)$, so if the reading is $0 \%$ then the mA output is 20 mA . If the reading is $100 \%$ then the mA output is 0 mA . |
| $4=20$ to 4 mA | mA output inversely proportional to the $\mathbf{m A}$ mode $(P * 891)$, so if the reading is $0 \%$ then the mA output is 20 mA . If the reading is $100 \%$ then the mA output is 4 mA . |

## Operation

P1 and P2

## P*891 mA2 Mode

This parameter determines how the ma Output relates to what is measured. By default, it will be representative of the selected Mode (P2-100), but it can be set to operate as follows:

P2-100 = 1 (Distance), 2 (Level) or 3 (Space)

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | mA output relative to Mode P1-100 |
| $1=$ Distance | mA output relative to distance. |
| $2=$ Level | mA output relative to level. |
| $3=$ Space | mA output is relative to space. |

P2-100 = 4 (OCM Head) or 5 (OCM Flow)

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | mA output relative to Mode P1-100 |
| $1=$ Distance | mA output relative to distance. |
| $2=$ Level | mA output relative to level. |
| $3=$ Space | mA output is relative to space. |
| $4=$ OCM Head | mA output is relative to OCM Head |
| $5=$ OCM Flow | mA output is relative to OCM Flow |

P2-100 = 6 (Volume)

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | mA output relative to Mode P1-100 |
| $1=$ Distance | mA output relative to distance. |
| $2=$ Level | mA output relative to level. |
| $3=$ Space | mA output is relative to space. |
| $6=$ Volume | mA output is relative to volume |

## Setpoint

## P1 and P2

By default, the mA Output will represent the empty ( $\mathbf{0}$ or $\mathbf{4 m A}$ ) dependant on $\mathbf{P} * \mathbf{8 9 0}(\mathbf{m A}$ Range) and $\mathbf{1 0 0 \%}$ of the operational span ( $\mathbf{2 0 m A}$ ), but you may wish to have the output represent a section of the operational span. For example, the application has an operational span of 6 metres but output is to represent empty ( 0 or $\mathbf{4 m A}$ ) dependant on $\mathbf{P} * \mathbf{8 9 0}$ ( $\mathbf{m A}$ Range) to a level of 5 metres ( $\mathbf{2 0 m A}$ ). If so $\mathbf{P} * 892$ (Low Value) should be set to $\mathbf{0 . 0 0}$ metres and $\mathbf{P} * \mathbf{8 9 3}$ (High Value) should be set to 5 metres.

## P*892 mA2 Low Value

This parameter sets, in Measurement Units ( $\mathbf{P} * 104$ ), the value of 'level', 'distance' or 'space', depending on the selected mA Out Mode ( $\mathbf{P} * \mathbf{8 9 1}$ ) at which the low mA output will occur ( $\mathbf{0}$ or $\mathbf{4 m A}$ dependant on $(\mathbf{P} * \mathbf{8 9 0}) \mathbf{m A}$ Range)
Default $=\mathbf{0 . 0 0 0} \mathrm{m}$

## P*893 mA2 High Value

This parameter sets, in Measurement Units ( $\mathbf{P}$ *104), the value of 'level', 'distance' or 'space', depending on the selected mA Out Mode ( $\mathbf{P} * \mathbf{8 9 1}$ ) at which the high mA output will occur ( $\mathbf{2 0 m A}$ ).
Default $=\mathbf{6 . 0 0 0} \mathbf{m}$

## Limits

## P1 and P2

## P*894 mA2 Low Limit

This parameter sets, the lowest value that the mA output will drop to, the default is 0 mA , but you can override this if the device you connect to cannot for example accept less than 2 mA , yet you want to use the $0-20 \mathrm{~mA}$ range. Default $=\mathbf{0 . 0 0} \mathrm{mA}$

## P*895 mA2 High Limit

This parameter sets the highest value that the mA output will rise to, the default is 20 mA , but you can override this if the device you connect to cannot for example accept more than 18 mA , yet you want to use the $0-20 \mathrm{~mA}$ range. Default $=\mathbf{2 0 . 0 0} \mathbf{m A}$

## Trim

## P1 and P2

## P*896 mA2 Low Trim

If the remote device you are connected to is not calibrated, and not showing the low value, then you can trim it using this parameter. You can either type in the offset directly, or use the arrow keys to move the output up and down until you get the expected result on the remote device that is connected.

## P*897 mA2 High Trim

If the remote device you are connected to is not calibrated, and not showing the high value, then you can trim it using this parameter. You can either type in the offset directly, or use the arrow keys to move the output up and down until you get the expected result on the remote device that is connected.

## Failsafe

## P1 and P2

## P*898 mA2 Fail-safe Mode

This parameter determines what happens to mA output 2 in the event of the unit going into fail-safe mode. The default is to do the same as the system fail-safe ( $\mathbf{P} 2-808$ ), but this can be overridden to force the mA output to an independent fail-safe mode as follows:

| Option | Description |
| :--- | :--- |
| $\mathbf{0}=$ Default | mA output will fail as per P2-808. |
| $1=$ Hold | mA output will retain its last known value. |
| $2=$ Low | mA output will fail to its low condition. |
| $3=$ High | mA output will fail to its high condition. |

## Allocation

## P1 and P2

## P*899 mA2 Allocation

By default, the mA output 1 will be representative of the reading obtained, as determined by the Mode P2-100.

If required, mA output 2 can be configured to be representative of the average, difference or sum of two points of measurement.
E.g. Both P1-100 and P2-100 $=6$ Volume then $\mathbf{m A}$ Output 2 can be configured to give an output representative of volume on point 1 or volume on point 2 or the average volume of the two points or the sum of the volume for both points.

The options available are as follows:

| Option | Description |
| :--- | :--- |
| 1= Point 1 (Default) | mA 1 Output relates to Point 1. |
| 2= Point 2 | mA 1 Output relates to Point 2. |
| 3 = Avg. $1 \& 2$ | mA 1 Output relates to average of Pt 1 \& Pt2. |
| 4= Sum $1+2$ | mA 1 Output relates to differential of Pt 1 \& Pt2. |
| 5= Diff. $1-2$ | mA 1 Output relates to sum of Pt $\mathbf{1}$ \& Pt2. |

## Important Information

When mA Output 1 is to be representative of the average or sum of two points of measurement, then both points must be set to the same units of measurement. In the case of flow P1-100 and P2-100 are set for $\mathbf{4}$ (OCM Head) or 5 (OCM Flow), then P1-706, P2-706 (Volume Units) \& P1-707, P2-707 (Time Units) must be the same. And in the case of Volume then P1-100 and P2-100 are set for $\mathbf{6}$ (Volume) then P1-605, P2-605 (Volume Units) must be the same.

## Important Information

When both mA Output 1 and mA Output 2 are allocated to the same point of measurement, for them to output the same reading, both $\mathbf{m A}$ low value (P834/P892) and mA high value ( $\mathbf{P 8 3 5} / \mathbf{P 8 9 3}$ ) must be the same for each mA Output.

## Compensation Parameters

## Offset

## P1 or P2

## P1-851, P2-851 Measurement Offset

The value of this parameter is added to the measured distance, in Measurement Units ( ${ }^{*}$ *104).

This Offset will be added to the level, as derived from the transducer, and will affect everything including the reading on the display, the relay setpoints and the mA output(s) allocated to the relevant point.

## Temperature

## P1 or P2

## P1-852, P2-825 Temperature Source

This parameter determines the source of the temperature measurement. By default, it is set to automatic ( $\mathbf{P 1} 1-852, P 2-852=1$ ), which will automatically detect if a temperature sensor is available from the transducer(s). If for any reason, no temperature input is received, then the Fixed Temp value is used, as set by P1-854, P2-854.

The temperature source can be specifically set as follows:

| Option | Description |
| :--- | :--- |
| $\mathbf{1}=$ Automatic (Default) | Will automatically select transducer <br> temperature sensor, if available, or fixed <br> temperature (P1-854, P2-854) if no <br> temperature sensor found. |
| 2 = Xducer | Always uses temperature reading from <br> transducer. |
| 3 = Fixed | Always uses fixed temperature (P1-854, P2- <br> $854)$ |
| $4=$ Ext Range "A" | Uses an optional external temperature <br> sensor with an operating range of $-25^{\circ} \mathrm{C}$ to <br> $50^{\circ} \mathrm{C}$. |
| $5=$ Ext Range "B" an optional external temperature |  |

This parameter determines which transducer is used to measure the temperature when P1-852, P2-852 = 1 (Automatic) or 2 (Xducer)

| Option | Description |
| :--- | :--- |
| 1 = Point 1 <br> (Default P1-853) | Temperature reading will be obtained from <br> Xducer on Point 1. |
| 1 = Point 2 <br> (Default P2-853) | Temperature reading will be obtained from <br> Xducer on Point 2. |

## P1-854, P2-854 Fixed Temperature

This parameter sets the temperature, in degrees centigrade to be used if P1852, P2-852 $($ Temperature Source $)=3$ (Fixed). Default $=20^{\circ} \mathrm{C}$

## Velocity

## P1 or P2

## P1-860, P2-860 Sound Velocity

This parameter allows for the velocity of sound to be changed according to the atmosphere the transducer is operating in. By default, the velocity is set for sound travelling in air at an ambient temperature of 20 degrees centigrade.
Default $\mathbf{= 3 4 2 . 7 2 m} / \mathbf{s e c}$

## P1-861, P2-861 Cal. Dist

This parameter is used to re-calibrate the speed of sound for the relevant point of measurement.

With the material at a steady level, view the value of P1-861 or P2-862, which will indicate the current distance as calculated by the Ultra Twin with respect to the current Velocity $\mathbf{P 1 - 8 6 0 ,} \mathbf{P 2 - 8 6 0}$. Physically measure the distance from the face of the transducer to the surface of the material level and enter this value, in Measurement Units $\mathbf{P}^{* 104}$ and P1-860, P2-860 will be automatically updated to compensate for any difference between the displayed and entered values.

## Stability Parameters

## Damping

P1 or P2
Damping is used to damp the display, to enable it to keep up with the process but ignore minor surface fluctuations.

## P1-870, P2-870 Fill Damping

This parameter determines the maximum rate at which the unit will respond to an increase in level. It should be set slightly higher than the maximum vessel fill rate. Default $=\mathbf{1 0 m} / \mathbf{m i n}$

## P1-871, P2-871 Empty Damping

This parameter determines the maximum rate at which the unit will respond to a decrease in level. It should be set slightly higher than the maximum vessel empty rate. Default $=\mathbf{1 0 m} / \mathbf{m i n}$

## Indicator

P1 or P2

## P1-872, P2-872 Fill Indicator

This parameter determines the rate at which the LCD fill indicator activates. Default $=10 \mathrm{~m} / \mathrm{min}$

## P1-873, P1-873 Empty Indicator

This parameter determines the rate at which the LCD empty indicator activates. Default $=\mathbf{1 0 m} / \mathbf{m i n}$

## Rate

## P1 or P2

## P1-874, P2-874 Rate Update

This parameter determines the way in which the rate is calculated. If set to continuous ( $\mathbf{P 8 7 4}=\mathbf{0}$ ), then the rate is calculated and displayed continuously, i.e. any change seen from shot to shot is calculated and displayed, but if set to use values P874=1(Default) then the values set in P875 and P876 are used to calculate and display the rate.

This parameter is the period (in seconds) over which the material level rate of change is averaged before the Rate Value (P877) is updated. If the Rate Distance (P876) is exceeded before the Rate Time (P875) has expired, then the Rate Value (P877) will be updated immediately. Default = 60sec.

## P1-876, P2-876 Rate Distance

This parameter is the rate Measurement Units (P104) over which the material level must change before the Rate Value (P877) is updated. If the Rate Time (P875) expires before the Rate Distance (P876) is exceeded, then the Rate Value (P877) will be updated immediately. Default $=\mathbf{0 . 0 5 m}$

## P1-877, P2-877 Rate Value

This parameter displays the current rate of change of material level, in Measurement Units (P104) per minute. It is read only.

## P1-878, P2-878 Lower Cutoff

This parameter is used to select the minimum Rate to be calculated, and can be used to eliminate unwanted updates from effects of ripples/waves on the surface of the material.

## Filters

## P1 or P2

The following parameters can be used to filter out unwanted changes of level caused by a 'rippled' or agitated surface.

## P1-880, P2-880 Gate Mode

This parameter determines the operation of the gate that is established around the echo being processed and is used to track the echoes movement and update the level measurement indication on the display. Please consult Pulsar for further information and assistance on changing the value of this parameter, Default $=0$ (Fixed)

## P1-881, P2-881 Fixed Distance

This parameter determines the width of gate to be used in tracking an echo and under normal circumstances will not require changing, but it can be increased in the cases where the surface is moving extremely fast (in excess of $10 \mathrm{~m} / \mathrm{min}$ ) to ensure smooth processing of the changing level.

## P1-882, P2-882 Process Filter

This parameter determines the number of 'cycles' that will be taken before a change in level is processed and the display updated.

| Option | Description |
| :--- | :--- |
| $1=$ Fast | level will be updated every cycle |
| $2=$ Medium | level will be updated every 8 cycles |
| $\mathbf{3}=$ Slow (Default) | level will be updated every 16 cycles |

## P884 Peak Percentage

When P1-102, P2-102 = 2 (Solids), this parameter can be used to determine the point at which the measurement is taken, within the established gate of the selected echo, in order to compensate for any error that maybe caused by "angles of repose" presented by the way the material settles. Please consult Pulsar for further information and assistance on changing the value of this parameter.

## Echo Processing Parameters

## Transducer 1 Status

## P1-900 Transducer 1 Status

This parameter shows the current state of the transducer on Point 1. The value means the following.

| Option | Description |
| :--- | :--- |
| $0=$ OK | Transducer working correctly. |
| = Disabled | Transducer is not being used (mA input is being <br> used instead, so P101=1) |
| $2=$ Stuck High | Indicates that the power and signal lines on the <br> transducer terminals are crossed over, or the signal <br> line is shorted to earth. |
| $3=$ Not Found | No transducer is detected. |

## P1-901 Echo Confidence1

This parameter displays the most recent echo confidence from the transducer on Point 1. It is useful to help find the best mounting location for the transducer, where you should aim to get the highest figure. It is a percentage of confidence that the echo reporting the level is the correct one.

## P1-902 Echo Strength1

This parameter displays the most recent echo strength figure from the transducer on Point 1, where a higher figure indicates a better returned echo.

## P1-903 Average Noise1

This is the mean noise reading from the transducer on Point 1. It is measured while the transducer is not firing, and gives an indication of the average amount of electrical noise present on the cabling.

## P1-904 Peak Noise1

This is the peak noise reading from the transducer on Point 1. It is measured while the transducer is not firing, and gives an indication of the maximum amount of electrical noise present on the cabling.

## P1-905 Sensitivity

This parameter determines the sensitivity of the unit. Please consult Pulsar for further information and assistance on changing the value of this parameter.

## P1-906 Side Clearance

This parameter is used to set the distance by which the DATEM trace will "stand off" from around unwanted echoes such as obstructions. Please consult Pulsar for further information and assistance on changing the value of this parameter.

## Transducer 2 Status

## P2-910- P2-916 Transducer 2

These parameters contain the same information as detailed in Transducer 1 Status, for Transducer 2.

## System Parameters

## Passcode

## P1 and P2

## P*921 Enable Code

Enables the passcode ( $\mathbf{P} * \mathbf{9 2 2}$ ), which means the passcode must be entered to go into program mode. If disabled (set to $\mathbf{0}$ ), then no passcode is required, and ENTER is used to enter program mode. Default $=\mathbf{1}$ (Enabled)

## P*922 Passcode

This is the passcode that must be used to enter program mode. The default is 1997, but this can be changed to another value from 0 to 9999.

## Backup

## P1 and P2

## P*925 Parameter Backup \& Restore

This parameter is used to make a backup of all parameters, for example to ensure a default set is maintained within the unit. If alterations are made to the parameters that do not work as intended, then the backup set can be restored into the unit.

You can make two separate backup copies if you wish, called backup 1 and backup 2, and restore from either.

The options are:

| Option | Description |
| :--- | :--- |
| 1= Backup 1 | Make backup to area 1 of all parameters |
| $2=$ Backup | Make backup to area 2 of all parameters |
| $3=$ Restore 1 | Restore all parameters from area 1 |
| $4=$ Restore 2 | Restore all parameters from area 2 |

## System Information

## P1 and P2

The following three parameters do not affect how the unit performs, but details, contained in them, may be required, by Pulsar, when making technical enquiries.

## P*926 Software Revision

This parameter will display the current software revision. It is read only, and cannot be changed. The software revision can also be viewed, while in RUN mode, by pressing the decimal point key.

## P*927 Hardware Revision

This parameter will display the current hardware revision. It is read only, and cannot be changed.

## P*928 Serial Number

This parameter will display the serial number of the unit. It is read only, and cannot be changed. The serial number can also be viewed, while in RUN mode, by pressing the decimal point key.

## P*929 Site Identification

This parameter allows you to give each unit an individual reference number, for identification purposes. You can set any number between 1 and 99999 .

## P*930 Factory Defaults

This parameter resets all parameter values, on both points P1 and P2, to the original Factory Set values that were installed when the unit was tested, before despatch to you.

To reset parameters, enter 1 (Yes), and press ENTER, then you will see a message "Entr if sure", you should press ENTER again. If you press any other key at this point, the parameters will not be reset, and you will see a message confirming this.

Once you have done this, program the unit, to the desired application.

## Date \& Time

## P1 and P2

The date and time is used, to control specific relay functions and date stamp certain events that are contained in the Data Logs. It is also used in conjunction with the system watchdog that keeps an eye on the times the unit has started.

## P*931 Date

This parameter display the current date, in the format as set by $\mathbf{P} * 933$ (Date Format), and can be reset if required.

## P*932 Time

This parameter displays the current time and can be reset if required, in the format HH: MM (24-hour format). This is set initially at the factory for UK time.

## P*933 Date Format

This parameter allows you to alter the format that the date is displayed to your choice of DD: MM: YY, MM: DD: YY or YY: MM: DD. The default is DD: MM: YY.

## LED Colour

## P1 and P2

Each relay has an associated LED, located on the unit's front panel, which indicates the status of the relay. By default, the LED of any relay that has been programmed but is in its "OFF" state will be illuminated 'yellow'. When "ON" alarm relays will cause the LED to illuminate Red and pump, control and miscellaneous relays will cause the LED to illuminate green. LED's of any relays that have not been programmed will not be illuminated. Customised settings for the colour of LED's can be achieved by using the following parameters.

## P*935 Off Relay Colour

This parameter selects the colour that a programmed relay should be when it is in its "OFF" state. The default is $\mathbf{3}=$ yellow, but can be changed to 'no colour', red or green.

## P*936 Alarm Relay Colour

This parameter selects the colour that an alarm relay should be when it is in its "ON" state. The default is $\mathbf{1}=$ red, but can be changed to 'no colour', green or yellow.

## P*937 Pump Relay Colour

This parameter selects the colour that a pump relay should be when it is in its "ON" state. The default is $\mathbf{2}=$ green, but can be changed to 'no colour', red or yellow.

## P*938 Control Relay Colour

This parameter selects the colour that a control relay should be when it is in its "ON" state. The default is $\mathbf{2}=$ green, but can be changed to 'no colour', red or yellow.

## P*939 Miscellaneous Relay Colour

This parameter selects the colour that a miscellaneous relay should be when it is in its "ON" state. The default is $\mathbf{2}=$ green, but can be changed to 'no colour', red or yellow.

All relays that are not programmed will show, 'no colour', i.e. they are off.

## Watchdog

## P1 and P2

You can check how many times the unit has been switched on, and look at the date and time of the last ten starts. This can be useful if there have been power failures or if for any reason the Ultra Twin restarts due to a fault condition. The Ultra Twin can be backed up from a battery which automatically cuts in during power failure, battery backed up units will continue uninterrupted operation and therefore will not register a loss of mains power. If, however, the battery was to fail during a mains power interruption, a start up would be recorded once power has been restored.

The following parameters can be accessed by directly entering the parameter number. To do this, enter the program mode and then type in the appropriate parameter number.

## P*940 Number of Starts

This parameter shows how many times the unit has been powered up.

## P*941-P*960 Start Date \& Time

Parameters $\mathbf{P} * 941$ and $\mathbf{P} * 942$ show the date and time that the unit was last started. There are ten start dates \& times recorded, which are parameters $\mathbf{P} * \mathbf{9 4 3}-\mathrm{P} * 960$. The first on the list are the most recent, and the last ones are the oldest. These are read only, and cannot be changed.

## Daylight Saving Time

## P1 and P2

## Important Information

In order to ensure the correct operation of Daylight Saving Time $\mathbf{P} * 932$
Time should be checked, and adjusted if necessary, to ensure that it is set for the current valid time.

## P*970 DST Enable

When Enabled (set to 1) the internal clock will be automatically adjusted to compensate for the difference between standard time and Daylight Saving Time. Default = 0 (Off)

## P*971 DST Difference

This parameter sets the time difference between standard time and Daylight Saving Time. The time difference is entered in HH:MM. Default = 01:00

## P*972 DST Start Time

This parameter is used to set the time of day at which Daylight Saving Time will start, the time is entered in the format HH : MM (24-hour format). Default $=02: 00$

## P*973 Start Day

Use this parameter to enter the day of the week $(\mathbf{P} * \mathbf{9 7 4})$ that Daylight Saving Time is to start.

| Option | Description |
| :--- | :--- |
| 2 = Monday | DST will start on a Monday |
| 3 = Tuesday | DST will start on a Tuesday |
| 4 = Wednesday | DST will start on a Wednesday |
| 5 = Thursday | DST will start on a Thursday |
| 6= Friday | DST will start on a Friday |
| 7= Saturday | DST will start on a Saturday |
| 8= Sunday (Default) | DST will start on a Sunday |

## P*974 Start Week

This parameter will determine the week of the month ( $\mathbf{P}^{* 975}$ ) in which Daylight Saving Time is to start.

| Option | Description |
| :--- | :--- |
| $1=$ Week 1 | DST will start on day $(\mathbf{P} * 973)$ in the first week $(\mathbf{P} * 974)$ <br> of the month $(\mathbf{P} * 975)$. |
| $2=$ Week 2 | DST will start on day $(\mathbf{P} * 973)$ in the second week <br> $(\mathbf{P} * 974)$ of the month $(\mathbf{P} * 975)$. |
| $3=$ Week 3 | DST will start on day $(\mathbf{P} * 973)$ in the third week $(\mathbf{P} * 974)$ <br> of the month $(\mathbf{P} * 975)$. |
| $4=$ Week 4 | DST will start on day $(\mathbf{P} * 973)$ in the fourth week <br> $(\mathbf{P * 9 7 4 ) ~ o f ~ t h e ~ m o n t h ~}(\mathbf{P} * 975)$. |
| 5= Last <br> (Default) | DST will start on day $(\mathbf{P} * 973)$ in the last week $(\mathbf{P} * 974)$ <br> of the month $(\mathbf{P} * 975)$. |

## P*975 Start Month

This parameter is used to select the month, in which Daylight Saving Time will start.

| Option | Description |
| :--- | :--- |
| 1= January | DST will start during the month of January |
| 2 F February | DST will start during the month of February |
| 3=March (Default) | DST will start during the month of March |
| 4= April | DST will start during the month of April |
| $5=$ May | DST will start during the month of May |
| $6=$ June | DST will start during the month of June |
| $7=$ July | DST will start during the month of July |
| $8=$ August | DST will start during the month of August |
| $9=$ September | DST will start during the month of September |
| $10=$ October | DST will start during the month of October |
| $11=$ November | DST will start during the month of November |
| $12=$ December | DST will start during the month of December |

## P*976 DST End Time

This parameter is used to set the time of day at which Daylight Saving Time will end the time is entered in the format HH: MM (24-hour format). Default $=02: 00$.

## P*977 End Day

Use this parameter to enter the day of the week $(\mathbf{P} \boldsymbol{* 9 7 4})$ that Daylight Saving Time is to end.

| Option | Description |
| :--- | :--- |
| 2 = Monday | DST will end on a Monday |
| 3 = Tuesday | DST will end on a Tuesday |
| 4= Wednesday | DST will end on a Wednesday |
| 5 = Thursday | DST will end on a Thursday |
| 6= Friday | DST will end on a Friday |
| 7= Saturday | DST will end on a Saturday |
| 8= Sunday (Default) | DST will end on a Sunday |

## P*978 End Week

This parameter will determine the week of the month ( $\mathbf{P * 9 7 5 \text { ) in which }}$ Daylight Saving Time is to end.

| Option | Description |
| :---: | :---: |
| 1= Week 1 | DST will end on day ( $\mathbf{P} * 977$ ) in the first week ( $\mathbf{P} * 978$ ) of the month ( $\mathbf{P}$ *979). |
| 2= Week 2 | DST will end on day ( $P * 977$ ) in the second week ( $\mathbf{P} * 978$ ) of the month ( $\mathbf{P} * 979$ ). |
| 3= Week 3 | DST will end on day ( $\mathbf{P} * 977$ ) in the third week ( $\mathbf{P} * 978$ ) of the month ( $\mathbf{P * 9 7 9 ) .}$ |
| 4= Week 4 | DST will end on day ( $\mathbf{P}$ *977) in the fourth week ( $\mathbf{P} * 978$ ) of the month $(\mathbf{P} * 979)$. |
| 5= Last (Default) | DST will end on day $(\mathbf{P} * 977)$ in the last week ( $\mathbf{P} * 978$ ) of the month ( $\mathbf{P * 9 7 9 ) .}$ |

## P*979 End Month

This parameter is used to select the month, in which Daylight Saving Time will end.

| Option | Description |
| :--- | :--- |
| 1= January | DST will end during the month of January |
| 2 = February | DST will end during the month of February |
| $3=$ March | DST will end during the month of March |
| 4= April | DST will end during the month of April |
| $5=$ May | DST will end during the month of May |
| $6=$ June | DST will end during the month of June |
| $7=$ July | DST will end during the month of July |
| $8=$ August | DST will end during the month of August |
| $9=$ September | DST will end during the month of September |
| $\mathbf{1 0}=$ October (Default) | DST will end during the month of October |
| $11=$ November | DST will end during the month of November |
| $12=$ December | DST will end during the month of December |

## Device Comm.

## RS232 Set Up

P1 and P2

## P*061 Comms Baud

This parameter is used to set the speed (Baud Rate) of the RS232 communications and can be changed to suit the connecting device. Default = 19200

## RS 485 Set Up (Optional)

## P1 and P2

Please refer to the relevant communications manual for availability of parameters and details of options.

## Remote Alarm

P1 and P2

When a Modem is connected to, via the RS232 port, (Consult Pulsar or your local distributor for further details), the following parameters are used to set up the Ultra Twin so that when the level reaches a specific alarm point, as determined by the setting of the relay(s) the unit will dial and connect to a remote telephone number to provide details of the event.

## P*145 Tel. No. 1

This parameter is used to enter the number of ' 0 's that appear at the beginning of the telephone number to be dialled that is to receive the message.

| Option | Description |
| :--- | :--- |
| $0=$ None | No '0's present at the beginning of the <br> telephone number to be dialled. |
| $\mathbf{1}=$ Add 0 (Default) | 1 '0' present at the beginning of the <br> telephone number to be dialled. |
| $2=$ Add 00 | 2 ' 0 's present at the beginning of the <br> telephone number to be dialled. |

## P*146 Tel. No2

This parameter is used to enter to enter the next 6 digits, following the ' 0 's, of the telephone number to be dialled. If there are less then 6 digits following the ' 0 's then just enter the digits required, if there are more than 6 digits following the ' 0 's then enter the first 6 digits and then proceed to $\mathrm{P} * 147$ and enter the remaining digits.

## $P^{*} 147$ Tel. No3

This parameter is used to enter any remaining digits of the telephone number to be dialled after completion of $\mathrm{P}^{*} 1455$ and $\mathrm{P}^{*} 146$ above.

## Example

Telephone number to be dialled is: 01234123456
P*145 Tel. No. $1=1$ (One ' 0 ' at the beginning of the telephone number)
$\mathrm{P} * 146$ Tel. No. $2=123412$ (The next 6 digits following the ' 0 's).
P*147 Tel. No. $3=3456$ (Remaining digits of telephone number).

## P*148 Call Type

This parameter determines what type of connection is made via the modem.

| Option | Description |
| :--- | :--- |
| $\mathbf{0 =}=$ Off (Default) | Remote alarm function is disabled |
| $1=$ Ring | This option initiates a connection to a remote <br> modem/computer which will then allow <br> remote communication with the unit. Please <br> consult Pulsar or your local distributor for <br> further details. |
| $2=$ SMS | This option initiates a predetermined <br> message which is sent to the remote <br> telephone number detailing date and time the <br> alarm was initiated, the site ID, alarm <br> condition and level at the time the alarm was <br> initiated. |

## Test Parameters

## Simulation

## P1 or P2

## P1-980, P2-980 Simulate

Test mode is used to simulate the application and confirm that all parameters and relay setpoints have been entered as expected. During simulation, there is a choice of whether the relays will change state (hard simulation) or not (soft simulation), but the LED's will always change colour as programmed, and the current output will change. If you want to test the logic of the system that the relays are connected to then select a hard simulation, but if you don't want to change the relay state, then select a soft simulation.

There are two simulation modes, automatic and manual. Automatic simulation will move the level up and down between empty level or the predetermined Start Level (P1-983, P2-983) and Pump/Control relay switch points, if you wish to change the direction of the level movement e.g. to go beyond relay setpoints, this can be done by using the arrow keys. In manual simulation, using the arrow keys will allow you to move the level up and down as required.

The choices for you to enter are as follows.
1= Manual soft simulation
$2=$ Automatic soft simulation
3= Manual hard simulation
$4=$ Automatic hard simulation

To return to program mode, press CANCEL and test mode will end.

## Note

Pump start delay (which by default is 10 seconds) is set to 0 during simulation.

## Test Setup

## P1 and P2

## P*981Increment

By default, simulation mode will move by $\mathbf{0 . 1} \mathbf{m}$ steps in manual simulation and by $0.25 \mathrm{~m} / \mathrm{min}$ in automatic simulation. Altering the increment can change this value.

## P*982 Rate

In automatic mode, the rate at which the level will move up and down, is determined by distance, $\mathbf{P} * 981$ Increment and the time, $\mathbf{P} * 982$ Rate which by default is set to 1 min and can be changed as required. To increase the rate at which the level moves increase the Increment ( $\mathbf{P} * \mathbf{9 8 1}$ ) or decrease the Rate ( $\mathbf{P} * \mathbf{9 8 2}$ ). To decrease the rate at which the level moves decrease the Increment ( $\mathbf{P} * \mathbf{9 8 1}$ ) or increase the Rate ( $\mathbf{P} * \mathbf{9 8 2}$ ).

## P*983 Start Level

When using automatic simulation, this parameter can be used to predetermine the point at which the simulated level will start at and return to. This can be used to simulate the lowest point to which the level would normally operate.

## P*984 Inc. Change

When using automatic simulation, you can incrementally increase or decrease the rate whilst running simulation. The rate is increased /decreased incrementally by the value $\mathbf{P} * 984$ (Incremental Change) by using the "decimal point" key to increase and the "plus/minus" key to decrease the rate of change. $\quad$ Default $=\mathbf{0 . 1} \mathbf{m}$

## Hardware

## P1 or P2

## P*990 Self Test

If you enter 1 for this parameter, then the unit will perform a self-test. This will confirm that the various parts of the circuitry are working correctly. You will see confirmation messages that the clock and the EEPROM are working correctly, and error messages for any parts that fail.

## P*991 Hard Test

When this parameter is selected, the unit will test the following in turn.

- LED's. Watch them change colour as shown on the display, and press, ENTER, if they operated as shown.
- Relays. Press a numeric key corresponding to the number of the relay you wish to test, and the relay will change state each time the key is pressed. If you press any other key, other than a valid relay number, then the test will end.
- Segments. All the segments on the LCD are lit up, so you can see if they all work. Press, ENTER, to end the test. The LED's all go green at the same time.
- Keys. You should press each key, to confirm it works, with a counter showing how many more keys you must press. Be sure to press the CANCEL key last, as this will show if all keys were pressed or not. If they were not, then an error message is displayed.


## P*992 mA Out Test

This parameter will allow you to select either mA Output 1 or mA Output 2 and force a specified current on to the output in order to test the equipment that it is connected to the output and to make sure the unit is working correctly. The figure you enter will be generated by the mA output.

## P*994 Transducer Test

If you enter 1 for this parameter it will continually fire the transducers, so you can check the wiring, until you press any key to cancel.

## P*995 Keys Test

You should press each key, to confirm it works, with a counter showing how many more keys you must press. Press the CANCEL key last, as this will confirm if all keys were pressed or not. If they were not, then an error message is displayed.

This page left blank intentionally

This section describes many common symptoms, with suggestions as to what to do.

| Symptom | What to Do |
| :--- | :--- |
| Display blank, transducer not firing. | Check power supply, voltage <br> selector switch and fuse. |
| Displays "No Xducer" | Check wiring to transducer. |
| Displays "Xducer Flt" | There is a fault with the <br> transducer wiring, so check <br> wiring to transducer. |
| Incorrect reading being displayed for <br> current level. | Measure actual distance from <br> transducer head to surface of <br> material. Enter Program Mode <br> and directly access P21 (Set <br> Distance) type in the measured <br> distance, ENTER, ENTER <br> again when prompted, wait <br> until SET displayed and return <br> to Run Mode, display should <br> now update to correct reading. |
| Material level is consistently incorrect <br> by the same amount. | Check empty level, (P1-105, <br> P2-105) display offset, (P1- |
| 802, P2-802) and |  |
| measurement offset (P1-851, |  |
| P2-851). |  |

Incorrect disposal can cause adverse effects to the environment.
Dispose of the device components and packaging material in accordance with regional environmental regulations including regulations for electrical $\backslash$ electronic products.

## Transducers

Remove power, disconnect the Transducer, cut off the electrical cable and dispose of cable and Transducer in accordance with regional environmental regulations for electrical $\backslash$ electronic products.

## Controllers

Remove power, disconnect the Controller and remove battery (if fitted). Dispose of Controller in accordance with regional environmental regulations for electrical $\backslash$ electronic products.
Dispose of batteries in accordance with regional environmental regulations for batteries.


EU WEEE Directive Logo
This symbol indicates the requirements of Directive 2012/19/EU regarding the treatment and disposal of waste from electric and electronic equipment.

